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TRANSLATOLK 'S NOTE

The following errors have been noticed in the Russian text of

this paper:
Page 14 (Russian text)

Equation (7) reads

= 7 R ™ ..’.—.
Y =F (ro) d (rl, rn).
should read
¥ =F (?0) "f (_1-:13 cer s —I:n)
Page 15 (Russian text)
Equation (9) reads n
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should read
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Page 29 (Russian text)

Equation {11): the equation number is omitted.

Page 85 (Russian text)

Equation (1), last term reads:
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FOREWORD /7

From a large number of problems related to variational principles
in collision theory, only a few have been selected for this book. First
oi all prime atteution is given to stationary problems and non-stationary
problems have been almost entirely omitted. Although the specific tran-
sition from a non-stationary to a stationary problem is essential for
substantiation of variational principles, nevertheless the variational
principles, as such, might be formulated without this transition and all
concrete calculations can always be reduced to stationary problems. The
specific problems which are being investigated here are entirely non-
relativistic. The application of variational principles in relativistic
quantur. mechanics ard field theory are nct examined here at all, although
many ra2sults which were obtained in this book are of the same general
character. Fipally, for the most part, various principal problems which
are related to variational principles are being analyzed in this book.
Numerical calculations ave given mainly for the purpose of illustrating
certain general states and methods. By the same token it is emphasized
that variational principles are suitable, not only in the case of numer-
ical calculations, but also for the purpose of obtaining many general
results which are at times difficult to derive by other means.

Instead of formulating the vaviational principles and their arter
effects in the most general form by utilizing the so-called formal theory
of scattering, this book will present concrete problems which are
sufficiently general sc that the generalization into complicated [8
problems would not present any difficulties in principle. Therefore, the
conclusions drawn are general in nature and are not compromised by approx-
imations. Such a method of reporting is noticeably more awkward and
possibly less exquisite; however, I hope this method will make it easier
t> read the book.

The mathematical conclusions are stated with a degree of rigor
normally considered to be sufficient in physical discussions. Many
reservations as to the corditions which should be placed on the functionms,
operators, etc., are avoided and are not investigated on purpose, with
the exception of those cases which represent a special interest.

Some of these results are recent and are being published here for
the first time. Up to the present time summaries and monographs on the
given problem were absent in the literature. In the widely known mono-
graph on the collir.on theory by Mott and Massey, only two pages in
their second edition were dedicated to variational principles. There-~
for, this book can be considered as a supplement to the monograph by
Mott and Massey.



In order to read the book it is necessary to have a knowlelge of
non-relativistic quantum mechanics including fundamentals of the collisiou
theory: the statemeut of the problem, the phase method, etc.

The material in this book is divided as follows:

In the first chapter 2 short review on the application of varia-
tional principles in quantum mechanics is given. Then the formulatior
of the variational principle for various, increasingly complicated
problems in the conllision tueory (a one dimensional equation of phase;
a general problem on elastic scattering of particles by a force field;
elastic and inelastic collisions for the problem of many bodies) is
considered. Problems are discussed on broadening of the class of
permissible variations so as to substantjate the pcssibility of appli-
cation of the variational principle iu those cases when the wave functions
of the colliding particles are only approximately known.

In the second chapter a relation between the various formulations
of the variational principle is established (the veriational principles
by Hulthen, Kohn, and Schwinger). 1In this paper thas relation of the
variational principle with the excitaticn theory utilizing the Born /9
method, the method of wave ~ncitation, the method of a self-adjusted
field, etc., are examined. Various versiou. of direct methods of phase
calculation are discussed, and results obtained with the help of varis-
tional methods for electron scattering cn hydrogen are analyzed. It is
proven in particular that there exists an infinitive successior of
variational principles, in which the first twc places are occupied by
the variational principles by Kohn and dchwinger.

In the third chapter those general properties which should be
satisfied Ly the amplitude of scattering and the 2ffective cross-section
are discussed. It is proven that these properties (the correlation of
maitarity and the principle of separate equilibrium) follow from the
symmetry of the basic functional, which is being concidered in the
variational principles, by the relation toward the per:.wtation of the
wave function at thz initial and final state. In this chapter the
variational principle which is connected with the correlation of uni-
tarity is formulated; also examined is the relation between i he elastic
and inelastic cross-section of scattering. In conclusion the properties
of symmetry and the variational principle for the matrix of *ransition
iu a non-stationary problem of quantum mechanics are considered.

In the fourth chapter formulae which are analogous toc the virial
theorem in problems of a discrete spectrum are derived for various cases
by scale variation., Certain results of these formulae are also studied.



The logical relation of the various sections in this book is such
that any of the Chapters II, III, IV can be read J;rectly after reading
Chapter I. The same pertains also to the vario -ztions in Chapter II,
with the exception of Secticns 10-11, and also . -ons 13-14, which are
closely related with each cther.

The contents of a large part of this book were reported and dis-
cussed at seminars of the Departmant of Theoretical Physics at thae
Leningrad University. I would like to .xpress my gratitude to all
associates of this department for the attention and interest which they
have displayed;and most of all I would like to express my thanks .o the
department head, V. 4. Fok, as well as N. G. Veselov, Yu. V. Novozhilov,
M. I. Petrashen, and P. P. Pavinsky ifor their valuable remarks. I /10
am also very nmuch obliged to F. P. Shepelenko who assisted me in writing
Bectioa 12 and L. D. Faddeyev for the detailed evaluation of problems
related to the deriviation of the Newton formula from the virial theorem
in Section 31. In addition,almost all sections of this bcok were evaluated
in detail at meetings with G. F. Drukarev to whom I must express my
special gratitude.



CHAPTER I /11

FORMULATION OF THFE VARIATIONAL PRI ICIPLE

§1. S-:tement of the Problem on the Collision of Electrons
with Atoms and Calculations Winich Were Made Before
Variational Methods Were Available

If we have an n-electron atom and a cluster of non-interacting
electrons which bombard tlhiat atom, then such a system is characterized by
*he wave function which should satisfy the Schroedinger equation ¥

Fr 142 — - . o - —
"2 %t B Ops Y +u] Hrg, 1y = v nx) =
Y
= HY (?o, T, -+ T ) =EY. - (1)
Here ?b are the coordinates of the bombarding electron; ?1, . T ?p
are the coordinates of the atomic electrons; HO is the energy operator
of the n-electron atom; 7/ is the interaction operator between the elec-
n
1 n . ,
tron and the atom; U = =71 - — . (Atomic unit< are nsed in
&y I -5l %o

this case, as well as throughout the entire book.) At large r, the wave

function should have an asymptotic form
‘i’(ro, rl, I N ;n) ~ e ‘l’(r]_’ ;23 L Y 1‘), (2)

where k is the wave number and V is a single vector which charactevizes
the direction of the bombarding electroms. W(r o« ..y T ) [12

satisfies the equation

*In this book a consecutive numeration of formulas inside of each
section is adopted. Wuen referring to a formula in another section the
number of this section will be indicated before the number of the formu.a.
For instance (1.3) is formula (3) Section 1. If a reference is msde to a
formula in the same paragraph, then the section number Jis not indi.ated.



H+ =¢ i, (3)

and is a v.ave function of the basic or excited state of the atom. The
totai enetgy E in (1) consists of the energy of the atom £ and the
energy of the bombarding electron

2
E=g+ s, )

If we take into consideration thc requiremeant for anti-symmetry of
a full wave function (including the spin function), then it is necessary
te complicate formula (2) by correspondingly symnetrizing the right part.

However , iu the case of a well-defined soiution to aquation (1)
the boundary condition (2) is still insufficia2nt. In addition, we should
also strive for fulfiilment of the so-called emission principie. This
means that in all parts of cenfigurational stace (that is, during the
increase of any of the r,) only divergent scattered waves ir an a.ymptotic
resvlution of the functidén Y should be cortained, in addition to the basic
term. This condition is placed cnly on those terms of an asymptotic
solution which decrease inversly propczctional to the first power of the
r-distance from the origin of the coordinates (center of atom). The terms

vhich decrease mcre rapidly than r-1 are rot subjected to zny limitatioms.
Since stationary problems will henceforth be examined almost exclusively,
it should be especially stipulated that by the expression "wave direction”
we will urdcrstand the directiou of its wave vector k. Thus, the

. ikr , . . .
expression e /kr gives a spherical symmetrical divergent wave, and

e-lkr/kr givas a convergent wave. We will not concern ourselves in detail
here with the nature of the emission principle, especially since in quantum
mechanics thie princinle is of the same nature as in classical physics.

in order to accomplish this, it would have been necessary to pass on toward
non-stationary problems. We will cnly mention here that actually /13
the principle of emission is equivalent to the requiremen: that the
scatterir, processes should setisfy the condition of causality; that is,
that the event-cavse should always precede the event-consequence.

In the simplest case, when an atom is in its fundamental state, the
energy of the bombarding electrons is insufficient to cause excitation of
the atom and we do not consider the properties of symmetry, the asymptotic
form of the wave function will be



(- ikP-F tkr,
. 0 — — e -] e d -
| e + f(U, ne) kr i w(rl’ s rq)’ r(\ - o,
[ 5. -O L4
ikT
.- — -— e - -y - - — -
£~ 8w mp) S Gy » Fi-10 Tor Ti1e > Tp)
1
L r,oe(i=1,2,--.,n). (5)

—_ —_
Here n, = ri/ri; and f, the amplitude of elastic scattering as well as 8>

the amplitude's exchange scattering, are the complex functicns which are
determined identically duriag this solution of equation (1). Through
these values the effective cross-section is simply expressed. For
instance, the differential effective cross-section of elastic scattering
(without an exchange) will have the following form

o @, =L @, 1%

k

(6)

If we take into consideration the symmetry of the full wave function Y,
then formula (5) should be symmetrized, the elastic scattering and the
exchange become indistinguishable, and the exchange amplitudes 84 will be

included in the expression for the effective cross-section of elastic
scattering. In the case of large energy of the bombarding electrons,
there will appear in (5) still other terms in the asymptotiz solution
which will correspond to the inelastic processes and ionization of the
atom.
*

Such a statement of the problem is completely rigorous and we
nave no doubt at the present time that thz results obtained duriang its
accurate solution would have been in complete agreement with the experi-
ment. However, even in the simplest case of a collision between [14
electrons and an atom of hydrogen it is very difficult to solve
equation (1)  Tnerefore, it is necessary to introduce various simplifying
egsumptions. In particular, an elastic as well as inelastic collision
can be comparatively esasily investigated if we assume that the inter-
action energy % in equation (1) is small in comparison with the kinetic
energy of the bombarding electrons. This assumption is true for elecircns

*
So far we are disregarding the relativistic affects, the magnetic
interaction of the electrons, etc.
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with an erergy on the order of hundreds of electron volts and higher.

In that case it is possible to take advantage of the excitation theory,
and in the first approximation we obtzin a comparatively simple expression
for the amplitude of scattering f and the effective cross-section o. It
is also easier to measure the cross-section ¢ for rapid collision than in
the case of a slow collision. A comparison of results frem application

of the excitation theory (the Born method) and the experimental daia

yield good agreement (see, for instance, Mott and Massey, Ref. 1,

Chapter IX).

wWithin the framework of the first approximation and the theory of
excitation, it is possible to consider the electron exchange; however, the
calculation of polarization of the atom by the bombarding electron, as
well as the distortion of the electron wave requires a transfer to higher
order approximations, which is very cumbersome and non-effective. 1In the
case of slow collision, it is necessary to utilize other methods, since
all these factors become, generally speaking, essential.

A second assumptiocn which corresponds to the Hartree approximetion,
is contained in the fact that the wave function cen be presented approx-
imately as follows:

¥=F (f)) v (F;, - - - - T). M

e thereby assume that the function § is known to us from other calcu-
lations. Then, for the wave function of the bombarding electron F we
obtain the equation*

2

-3V +uvm]r=5F, (8
where U (r) has the following form [15
n
_-B [ f T ac.-. 2 1 dT .
v el G DP) FEg e O
-‘=1

Consequently, the atom is substituted in such an apprnximation by an
effective potential field. The potential U might be calculated if a
calculaticn of the wave function for the given atom was conducted (for

*
The problem on the derivation of this equation is d'scussed in
detail in Chapter II.
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instance, by using the method of a self-coordinated field), or this atom
might be substituted by a much rougher potential, derived by the Thomas-
Fermi method.

Within the framework of such an approximation the exchange and
polarization of atomic electrons by the fecllowing wave is not considered.
It is also obvious that it is impossible teo <olve the protlem on in-
elastic scattering with this method. However, in spite of the crudeness
of this method, a fair agreement with experimental data was obtained in
the case of complex atoms, even when used in the capacity of U (r), the
Thomas-Fernii potential.* Therefore, the problem of the scattering of
electrons by a central force field is essential ir the theory of slow
collisicns. However, in certain cases (for instance, during collisions
with atoms of helium and hydrogen) it is necessary to take inte consid-
eration the elactron exchange, that is the symmetry of the coordinrate
wave function. The simplest way for doing this is by correspondingly
svmnetrizing the expression of (7). Then we will obtair for the function
F a more complicated integral differential equation, wihiich will contain
characteristcic exchange terms. Such an equation was solved, for instance,
by Merse snd Allis (Ref. 3) for the collision of electrons with atoms of
hydrogen and helium. The calculations are quite complicated. The
resu’ .s proved to be in mu.ch better agreement with experimental data
than cthose which were obtained without the consideration of exchange,
particularly at low energies.

The calculations of the atom's rolarization is an even more
difficult prcblem than the csiculation of exchange and until recently
only one paper dealing with this problem was available (Ref. 4.

If we compared the probiem on collision of electrons with [16
atoms, for instance, with the problem on the calculatior. of energy luavels
of multi-eleztron atoms {where it is necessary to solve actually the same
equation (1}] , then we will see that in the first case much less was
done and the results ave considerably less reliable than in the second
case. This can be explained on one hand by the fact that therc is much
less experimental data on the effectivc cross-sections than on atomic
spectra. Therefore, a comparison of theory and experiment can successfully
be conducted only in rare cases,and the problem of the accuracy of the
methods applied in the collision theory often remains questionable. Om
the other hand, the method of calculation in the collision theory is less
developed than the method of calculation for related states and the
calculations themselves considerably less cumbersome. Particularly in
the collision theory, no one succeeded, until recently, in utilizing the

*
See Mott and Massey (Ref. 1) Chapter IX, X, and also Gombash
(Ref. 2), Section 29. This paper contains references to original work.
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variational methods which have played an extremely importani role in
atomic calculations of related states.

82. Variational Principles For The Problems
Of A Discrete Spectrum

Variational methods have been used in quantum mechanics since its
very beginning. In the first papers by Schroedinger the problem of finding
the energy levels of a particle in a potential field was formulated as a
problem of specific values. The variational principles for this type of
problem were formulated in mathematics a long time before the appearance
of quantum mechanics. Also formulated were the so-called divect me‘thods
(the Ritz methed) , which have made it possible to approximately calculgte
the specific va 1es as specific functions based on their extreme
properties.

A large number of concrete calculations of the energy levels for
atoms and molecules was made with the help of the Ritz method. Among
these should be noted the works by Hylleraas (Ref. 5) (Calculations of
the Atoms of Helium) and the works by James and Coolige (Ref. 6)
(Molecules of Hydrogen). The discrepancy between the experimental data
and the figures which were obtained in ihes: calculations was within the
iimits of experimental errocr and; thus, the complete applicability yavi
of quantum mechanics towards atoms with severzl electrons and mclecules
was confirmed.

In additicn to the calculation of the cnergy levels, variational
methods can be utilized fuor the calculation of such magnitudes as the
poclarizability of atoms and molecuies, the entire magnetic susceptibility,
etc. In particular, the calculations c¢f the polarizability of the most
simple atoms (Ref. 7) and molecules (R:f. 8), which were condicted with
such a method. have led to good agreement w'th the experiment.

In 1930 the variational principle was utilized by V. A. Fok (Ref. 9)
for substantiation of the method of the self-aligned field by Hartree and
for the formulation of the more accurate method, the Fok method, in which
the symmetry of the wave function (electron exchange) is taken into
consideration. It is easy to extract from the variational principle the
basic equetions of the Thomas-Fermi method, the equations of the excita-
tinn theoxy, ete. Finally, as was proven by V. A. Fok (Ref. 10), it is
easy to prove the virial theorem with the help of the variational
vrinciple.
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It is cbvious from the above, that the variationmal principle is,
on one hand, the basis for pcwerful calculation methods and, on the other
hand, a number of important theuretical resiilts can be easily obtained
from this principle. Tuus, this principle is one of the basic assertions
of the quantum theory.

However, as was already mentioned, there is on hand a large group
of quantum mechanical problems in which the variational principle was not
formulated: those are the cases when the state of the system pertains to
the continuous spectrum of the energy operator. To this type belong all
probiems in co:lision theory and particularly the problem on the collision
of electrons with atoms.

§3. Variational Priuciples For The Problems
In Collision Theory. Short Review

The first formul=ztion of the variational principle for the simplest
one dimensional problem of a continuous spectrum was given by Hulthen in
1944 (Ref. 11,12). Based on this principle Hulthen has proposed a £18
method for an approzimate calculation of a radial wave function and its

phase, after checking this method on simple examples.

I. E. Tamm (Ref. 13,14) formulated independently, in 1948, a
variational method which is close to the Hulthen method.

In 1947 Schwinger (Ref. 15) developed a variationagl method which
differs from the Hulthen method, based on the integral equation for wave
functions. .

In 1948 Kohn (Ref. 16) considerably generalized Hulthen's formu-
lation, extending it to a general case of scattering. After that a number
of papers appeared (Ref. 17) in which new variational methods were
proposed; however, all these methods differed insignificantly from the two
basic methods: the Hulthen-Kohn method, which is based on Schroedinger's
differential equation, and the Schwinger method, which is based on the
integral equation.

Proof and examples of application of these variational methods
pertain mainly to the research of the phase of tle asymptotic behavior of
the wave function for the simplest potentials - the rectangular potentiagl
well, the Yukawa potential, etc. - and did not present any independent
interest.
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In 1949 the first works by Huang (Ref. 18-20) appeared, in which
an attempt was made to apply thz variational method 0 the problem on the
collision of electrons with a real atomic sistem - the atom of hydrogen,
Henceforth, the results by Huang were considerably improved by Masscy and
Moiseiwitsch(Ref. 21) and were further extended to other caiculations -
the inelastic collision of electrons with hydrogen (Ref. 22), collisions
with hydrogen-like ions (Ref. 23), and finally on the elastic and in-
elastic cellisions of electrons with atoms of helium (Ref. 24 and 25).
For instance, in the case of elastic scattering on the hydrogen atom,
simultaneously considering such effects as the polarization cf 2n atom
and exchange,more reliable results were obtzined by the method of a self-
aligned field with the exchange calculation (the Fok method) than those
calculated by Morse and Allis (Ref. 3).

In addition to these papers a number of attempts were made to [19
examine the different variational methods from a single viewpoint and to
give a general review of their conclusions (Ref. 26 and 27). A close
relation was established between the variational methods and the excitation
theory (Ref. 16, 28, and 29). Finally, it is possible to examine the
variational methods from a sufficiently general viewpoint, if we intro-
duce the concept of the collisions operator which is now being widely
utilized in quantum electrodynamics and in field theory (Ref. 27 and 30).

Formulation of the variaticial principles for relativistic problems
is present, for instance in the work by Parzen (Ref. 31) and also in the

work by Yu. V. Novozhilov (Ref. 32), where problems of quantum field theory
are also investigated.

Another group cf variational methods based on the integral equation
is less applicable for calculations of atomic collisions. Until now these
variational methods were used basically for calculations of nuclear
processes: for instance,for interpretational data on proton-neutron
scattering (Ref. 33).

Generally speaking, all these vaviational methods might be used not
only for the solution of quantum mechanical problems, but also for problems
of electrodynamics, the theory of elasticity, and others. For instance,
in the paper (Ref. 34) the variational method by Schwinger was used for
the investigation of the deflection of a flat wave on a cylinder. In the
paper (Ref. 35) a variational principle for an acoustical field is formu-
lated. It might be anticipated that by utilizing these methods in the
collision theory we will have in our final calculation an accuracy com-
parable to those now reached in the theory of atomic spectra.
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§4. Hulthen's Variational Principle For A
One Dimensional Equation

The Schroedinger equation for the scattering of electrons by a
central force field (1.8) can be solved by resolving the wave function
by partial waves - which are characteristic of the functions of the /20
moment operator of the amount of motion m2. We will put down the
equation (1.8) in the following form™

(V4% -y (r)] Y@ =0, V=20 (), 1))
whereby
-, ikv.T - - eikr - T
Y (r) ~e + f (v - n) Y 2= (2)

After a resolution by spherical functions - proper functions of the

operator 52 - we have (see Ref. 1, p. 38).

L o, 1l ..
Y(r)=i it e ta+ 1)%;% e, G- D, (3)
e=0 '
f(v-n)=z (24 + 1) (e -1 Pz (v + m. (4)
4=0

Here,P are the Legendre polynomial , wz satisfy the equations

-2
S 2. LA+ D) - -
[drz A R el RCE LR RO ()

*
We are returning here to a more familiar definition of Y for the
wave functions of a bombarding electron.

rerti mee e e o W eee L ot T -
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and the phases nz are found from the asymptotic form of ¢£
\ ~ ¥ - le
bg sin (kr 2 + ﬂz). (6)

Thus, the solution of the general problem of scattering by a
central field is reduced to a solutlon of the differential equations (5),
and i< order to comstruct f(u n) it is necessary to know only nﬂ’ the

pkases of radial functions W,‘ Finally, a complete effective cross-

section of scattering is determined by the formula

w
o= ) (u+ 1) sin’q,. %
K g/
40
In the case of slow collisions the phases nﬁ decrease [21

rapidly with an increase of ¢ and, therefore, in formulae (4) and (7)
only several of the first terms of the sum are essential. In the case

of the slowest collisions (on the order of one electron volt), whe~ the
de Broglie wave length is larger than the radius of action of the forces,
it is possible to disregard all phases except the zero phase and the
problem is reduced to a solution of one common differential equation.

We will formulate the variational principle fcr such a one
dimensional problem. It is necessary to solve the following equation.

2
[9-5+ K2 - v (r):] ¥ () =0, (8)

dr
The condition

¥, © =o0. (9

Then

@0 (r) ~ A sin (kr + ﬂo), (10)
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and the phase of the wave function T),, is the desired value which deter-

0

mines the effective cross-section. As far as V (r) is concerned, it is
l)

sufficient to make the assumption that the function r"V is finite and is

continuous in the interval 0 £ r < o,

If one should attempt to form a functional, |Z* HZ dr, that is, in
the given case "

(22} 2
Jr g% (—d—i - v> @dr, (11)
0 ~dv

analogously to the method used for combined states, we will find
that this functional diverges for the function ¢, which satisfies the
conditions of equations (9) and (10), since the behavior of the

sub-integral expression at infinity, is as Azkzsin2 (kr + no). In order
to make the functional converge,Hulthen has proposed to add within the

brackets under the integral k2 an oxpression of the type

fsz'* (H - E) gdr. (12)
In our case /22
2 _
1@ =g [E+®-vw|s d. (13)
J [drz J \ ‘

The functional and its first derivative converge for the function @ = a
constant, and satisfies the conditions

# ) =0, 8 (r) ~Asin (kr + ), (14)

where 7| is not necessarily the accurate phase no. In addition, it is

necessary that the sub-integral expression (13) should decrease at

infinity faster than 1/r. This places a condition on the consecutive
terms of the asymptotic solution of ¢ (r). If we should substitute in
this functional the accura:e function Yoo then it is obvious that this

functional would counverge to zero.
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We will variate the function @; therefore,we will assume its
asympiotic form also changes:

n
QO

G =%+ 80 ~ (A+ 84) sin (ke + T+ &); & (0) (15)

We will now calculate the variation of the functiownal I

® 2 N 2

ja;zf(—d +k2-V)Qfdr+Jrﬁ<-—d +k2-v>5525dr=
2 2

0 dr 0 dr

81

® 2
2 f of (-5 + 1% - V) g ar + (Bog' - 9'op) (16)
0 dr2 7

r=20

The extra integral term can easily be calculated if we utilize
(14) and (15)

(geg' - 2'30) = (28" - 9'D) =

A (A+ 8A) k [sin (kr + 1) cos (kr + 7 + 3T) -

cos (kr + T) sin (kr + N+ &M 1] =

- A (A+ SA) % sin BN ~ - A%KEN. (17)

Thus, if the EFunction ¥ equals ¢0,[i.e., it satisfies equation (8) 123

with the conditions of (9) and (10)]), then by variatirg the function

Yo» we obtain for the functional I (Ref. 11):

81 (¥,) = - A%ken. (18)



19

Consequentially, I (wo) is stationary in relation to any veriation which
preserves the phase ﬂo of the asymptotic solution of wo. The corverse

is also true; if for a certain function J, the functional I () is
stationary in relation to an arbitrary variation, which precerves the
phase 7|, then J satisfies the equation (8). This follows directly from
the formulae (1€6) and (17).

The variational principle can be formulated somewhat differently
if we form the functional

3@ =AM+ 1 (9. (19)

For «n accurate wave function, this functiunal equals A2k'no, where this

functional is already stationary in relation to the arbitrary wvariation
¢0, which preserves the amplitude A. Otherwise

A%k, = star. val. (5 + T @) = st {1 @], (20)

In such a form there appears distinctly an analogy between the phase

and che specific value of :he discrete spectrum, in which case it is
also possible to write

E, =St J o* Hpdr = St {E}, (21)

o

with the additional normalization condition f g dr = 1.

There is, however, an essential difference. From the variational
principle for a discrete spectrum follow not only stationary but also
extreme properties of the functional E (by additional conditions of
orthogonality). Because of this fact, thc actual proper value of the
operator H i. always less than the value E; thus, the lower E, that is
the closer E is tn the actual proper value, the more accurate, gznerally
speaking, is the approximate functior which is substituted in the
functional. We are concerned here only with the stationarity of J.
Ccasequently, even a roughly approximate function ¥ might yield an 24
accurate phase value when stated in J (). We are not gble to determine
which of these two approximate functions is more accirate, using ooly
this definition.
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[¢=]

It is proposed in formula (18) that da = 0 and that, corsequently,
A does not depend on M. Assuming that the standard coefficient A depends
in a determined manner on 7, thus limiting the number of possible
variations, we will come to other useful formulations. For instance,

assuming that A = , we obtain the Kohn formulation (Ref. 16)

cos T

81 = = - X8 (tg I, - (22)

Lk oy
\./-‘0
cos!ﬂn
\¥3

The stationary expression for tg ?O may be stated as follcws:
ktgNy =5t {3, (A} =st{ktgn+ 1 (D] (23) -

whereby it is assumed that the asymptotic behavior of the function ¢ is
d=termined by the fcrmula

1 — sin (kr + ) = sin kr + tg T cos kr. (24)
COSs i}

g~

If we assume that A = then we will obtain a stationary

sin N°
expression for ctg ﬂo
- k ctg Ty = St {Jz} =St {- k ctg N+ I}; (25)
where
Z ~ctg M + sin kr + cos kr. (26)

Both th=se methods of standardization are inconvenient because in certain

cases the multiplier A and the fuuctionals J1 and J2 are transformed into

infinity. More convenient in this relation is the standardization A =1,
Then

z 2
17 d 2 .
M, =St {n+kJ g(~dr2 + k v)g dr}. (27)
0
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Generally, the stationary expression for a certain function 25

of the phase f (ﬂo) will be obtained if we put A =/ £'(7). Then

2

3
R S -7 ary (28)

l
7
SN
0 dr

I\Jl o

£ (1) =St §f m o+ &0

ana

Z (r) ~/£" () sin (kr + 7).

We have developed here a variational principle for the case 2 = 0,
that is, for the so-called s-scattering. However, it is completely clear

that the case £ # 0 will differ only by the addition of the term
2 (4 + 1)/r to the potential V in all formulae and the constant phase
4z in the asymptotic form of the {unctici. these additions will have no

2
effect on the calcu’ations,and the formulation of the variational prim-

ciple will remain the same:

« A
~ 2 3 ~N
ST (5 ) =5 | o (L4 2oy, 4 o
L J e 2 2 g
0 [V 4 T
= 2
0 ~ 1
n, = St {n l—J p L 2oy - AU g
k 2 2 L J
0 N r J
} . £x oy
b -— | ~o Y - T\ 1
4, (0 =0, ¢, ~ sin (}r IR
4 (30)
Z () =0, F - sin (kr - %$-+ ﬂ) .
~ J
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§5. The Variational Principle For A Potential which Has A
Coulomb Character at Infinity

We have investigated, until now, the potentials which decrease at
2 . .
large r no slower than at 1/r”. However, during collisions of electromns
with ions, the field decreases, for instance, as 1/r and this case is /26

always essential.

Since the field is spherically symmetrical, it is possible (as
before) to resolve Y¥(r) Ly spherical functions and thus we arrive, as
previousiy, at the eyuation

N

" d

2 1
+ kT -V (r) ) =0, (1)

~

dr

where V (r) has the form of
c
V) =7+ v(), (2)

2 . .
and V (r) decreasec no slower than 1/r°. We form the functional

> 2
» - 4 T
I= J4] f*—§'+ kz -<. viv) i g (x) dr. (3)
. L r .
0 dr

If we substituvte in this functional the function @ with the commcu
asymptotic behzvior ¥ ~ sin (kr + T), then it is expedient that the term
which contains ¢/r will yield a divergent expression during the inte-
gration. The asymptotic coulomb character of the field changes c.ne
behavior of the wave functions. We should state as kuowr quantities

@ ~ sin (¥» + | + @ 1ln k), (4)

and pick o to eliminate the divergent cterm of infinity. We have
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k]

e
-4
x‘N
'

" e

-
-v(r) sin(kr+ ainkr+T) =

r~-"
N

dr

-- 1‘-‘-‘-"-}# sin (kr + o ln kr + 1) + 0 (1/r9). (5)

It can be seen from this that 2ka = - ¢ and, consequently

£

Z ~ sin (kr - ok

ln kr + T). (%)

In the integral we will variate the accurate solution of the equation f27
assuming tnat

?gi=~:,+51y~Asin(kr-%klnkr+n+6n);
T (0) = 0. (7
We will obtain
~ r=w
I(ty)=I(-&)+6I=81=(\b6'&'-*3:'811" =
ir=0
= - 82 - 20 ginsn] = - a2
LA \k ke, Sin S;J“Hm ATkaN. (8

Thus, we will obtain formally the same results as we did in the
first case; however, here the sense of the pliase 7 is entirely different.
Tne formulation of the phase method for che potential which has a coulomb
character at infinity is present, for insvance, in the book by Landau anrd
Lifshitz (Ref. 36, Section 106); f£(6) is determined as before by the phases
ﬂz, hut with a more complicated method. Tho complete effective crass-

section 0, as is known, diverges in the case of the field which has a
coulomb character at infinity.
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§6. The General Problem of Elastic Scattering of Particles
And The Variational Principle By Kohn

We will examine the case when the scattering center does not have,
generally speaking, a spherical symmetry. Then the problem is to deduce
a solution of the equation

2

V+t-v Y @ =o. (1)

The character of interaction of particles with the scatterer ic determined
by the operator V. 1In a simpler case this is simply a material function
of the coordinates V(T); that is, the dispersion takes place under the
influence of potential forces which depend only on the position of the
particle. 1t is possible to assume that the function V(¥) is complex,
then the omerator V is self-conjugate and during the processes of
scattering the particles will either be absorbed or eliminated. The full
current which will pass through a large radius sphere will, generally /28
speaking, equal zero. In a more general case, it might be considered that
V is a certain integral operator.

WO =[RE DY E 2)

-

and chie properties of the operator V are determined by the properties of
the rucleus K.

Considering that the process of scattering is characterized by
equation (1), our main assumption is contained in the fact that particles
with a given energy might be scatter~!, abscrbed and created, but cannot
change their encrgv; that is the frequency of the incident wave and the
frequency of the scattered wave are identical. Thus, we have eliminated
from our investigation all inelasvic prccesses. By introducing the anti-
conjugate addition to the operator we are able, for instance, to consider
that the amount of elastic scattering of particles will be less than the
amount of incident particles; however, such a consideration will be purely
phenomenological .* For a detailed investigation of inelastic processes,
a dynamic examination of this scattering center itself is necessary.

In order to formulate a variacional principle we should inves-
tigate together with a solution to equation (1), which has a common
asymptotic form

*
They are primarily received in this way: for example in the
description of the elastic scattering of neutrons by the nuclei.
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—_ - j_k:: . ; - - e ikr
Y (v, 1) ve + £ (v, n) 5—, (3)

also the solution to a hermitian conjugate equation
@ +x*-v) s =0, (4)

which will contzin, in the case of large r

— - ]_k{;-; — -, e-ikr
8 (V, n) ~e +E @, 0 (5)

in addition to the incident wave, only convergent waves will thus satisfy
the "'reverse' emission principle. It is obvious that the scattering
process can be characterized only by the function $* which, after the
substitution of v by -v, takes on a common asymptotic form (3) and [2S
is the solution to the equation

2

* * — -
(Vz + 17 - V+ Y% (v, r) =

2

=@+ -y Yy @, 0 =o. (6)

In this case V' signifies the transpose operator; the nucleus K' is
related to the nucleus of the operator V by the formula

K' (r, ') =K (r', D). (7)

1f the operator V, in particular, is a functional, {diagomnal in a
coordinate presentatinn) then V = V' and

Y@, =Y (¥, D.

We will construct the functional
%k - -, - .,
I= f ) (v2, r) (V2 + k2 - Y (Ul’ r) d7 =

=Jr (-7, D &+ -n ¥ E,, D o, (3)
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which obviously converts into zero for the accurate functions ¢ and Y.
We will search for the variation of this functional, assuming that the
asymptotic form of the variated functions is also subjected to a change.

¥ (vl, r) = Yl + 8?1 ~

ikv, -F o o o Qlkr
~ e + [f (vl, n) + >t (vl, n } el ®

¥ (v,s r) = ‘y2+ 5'1'2 ~
ikv T ikr

2 R ~et 4 18
e + [f (vz, n) + of (az, n) | gl (10)

Then, bv dropping the second order magnitude
> <) ping

2 _ v 8Y, dr,

2

]

J SYZ (Vo + k
we obtain

51 =f\1'2' 7+ k2 - 5Y, dr.

Obviousiy, the variation of the function YZ' does not change the functional
in this approxination.

We will divide all space into two parts by the spherical radius R
with its center at the origin of the coordinates and we will utilize /30

Green's formula. Then

- d
- [ - [
51 f (¥, soey, -oY s=¥,') ds+
s

r=R
R
o 2 2_ 1 1)
+ [ oy, (Frad - v ar e
r<R
+ j v, 7+ k- oY, dr. (12)

>R
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The second integral in the right part exactly equals zero, and the third
integral approaches zero as R - », During the search for the limit of

the first integral we may substitute, instead of the function 6Y1 and Yz'

their asympictic form and then drop all terms appearing under the integral,

which decrease more rapidly than R-z, siuce when R - « the integral of
these terms will approach zero along the surface of the sphere. The

integral of the terms which decreases just like R-Z, but contain the flat
wave will also tend towards zero, due to the presence of an oscillating

multiplier elkRv.n. Thus, we have
- -iky,.x ilr ikr
= 14 2 t (.3 = Q___] o7 T 0™ e 1
51 élﬁn f {Le + f' ( Y n) o Se Lﬁf (vl, n) kr
SR
ikr -iky,.T ikr
- ~ - e ) —a.l" 2 v - - e _‘}
| 5F (ul, n) ™ J Se Le + £7 ( Vo n) ot ds =
r=R
1kv2or eikr ik "ik32 T . 1
= lim Le - ik - e © (- 1kv2 ‘n X
R r=
21 1
x Bf (31, ) dS = lim iR f dag J elkR(l-COSQ) (1 + cos 8) x
B 9% 0
22 R,
x Of « sin & . d8 = 1lim iR I dg j e (2 -~ y) Bf . dy. (13)
R=="0 0

In this case the directiom 32, as a polar axis within the spherical
coordinates, was selected. During  he differentiation of r, the /31

-*
term which is proportional to R © was drcpped and the exchange of 1
- cos 6 = vy was conducted. We will partially integrate the integral
by y. Then

2n ikRy |72
51 = Lin [dg ﬂ}e 2 - %) ﬁf_, -
R 0 ] 7#)
2
1 ikRy d
- E‘f e 55 [(2 - y) B3f] dy} . (14)
0
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The internal integral in this formula tends toward O when R — =; the

extra integral term converts into 0 on the upper limit, and on the lower
limit it equals

1 ikRy
e 2 -7 5f] [k afj -2 © of (”1’ v o (15)
7=0

[t is obvious that when 6 = 0 the function 5f does not depend on ¢, and
we finally obtain

51=6f\f' (- 7 D (v2+k2-V)v(T,~’1, D) dr =

o b i
= X of (vl, v,) - (16)

This same formula can be acquired somewhat differently by resolving
expressions (9) and (10) by the spherical functions for the asymptotic
form of the function Yl and Yz' and by substituting the proper solutions

in formula (12). This method is used for the soLution of analogous
formulas in Chapter III.

We will now examine a geperal bilineal functional
2 2
I (@), ) =] 8, (V + K -V) g dr, (17)

where gi and ¢2 are arbitrary functions which have the following
asymptotic form

ik;i-? - eikr
ﬂi ~ e + g (n) e (i =1,2. (18)
Then, on the basis of (16), it is possible to confirm that if the /32

variation 6¢i and Sﬂ change only the amplitude gi(n) in formula (18)
then the functional

T=g (-T)+ 1@, 0), (19)
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is stationary in relation to all these variations only in the cas: if
ﬁé y! (vz, r), gl ¥ (vl, Y). In that case the functional J i:self

will be equal to the amplitude of scattering £ (Ul, - 32). Thus,

—

£ Gy, -7y =8t {1 @, 8} (20)

1f the operator V is symmetrical, then the function Y' (32, )
= Y(gz, ?) is the solution to that same equation (1) and during the

examinaiion of the variational principle we deal only with one problem of
scattering: the problem which is characterized by equation (1).

If the condicions of symmetry are not observed, then we should investigate
two problems: In one of there problems the interaction with the scatterer
is characterized b the operator V and in the other problem - by the
operator V'. Particuiarly if the operator V is self-conjugated (hermitian),
then V' = V% and the second problem is characterized by the complex
hermitian operator V¥, Such a problem occurs for instance if we consider
the magnetic interaction between the bombarding particle and the scatterer;
the operator is then complex and self-&onjugated.

- -,
The wave functions Y (;, r), ¢ S?A r), which we are invest.gating
p

ikv . NP
here, have the form of a flat wave et VT at infinity and, thus, charac-

terize the state of a free particle in the presence of 1arge r with a
determined impulse kKv. The scattering amplitude £ (vl, VZ) determines

the proper, validity of transition of th1s particle from a state with an
impulse kv1 into a state with impulse ku2 as a result of scattering.

Returning to the common hermitian definition of the functional I

2

e 2
= * - ’
T J @2 (V" + k V) Yl dr, '21)
We are able to formulate the results of this section in a general £33

form.

Let us examine the transition from a certain original state I into
the final state II, the probability of which is determined by the square
of the coefficient of the scattering amplitude f. Let us further assume
that the functions Yl and Qz,when substituted in the functional I

(invariated as well as variated), satisfy the conditions:
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1. a) The fundamental term of the asymptotic solution of the .
function Yl (which does not disappear when r - «) charac-

terizes the original state of the particle I;
b) the fundamental term of the asymptotic solution to the
function YZ characterizes the final state of the particle II.

2. a) In addition to the fundamental term the asymptotic solution
to the function Yl (among the terms which decrease as r-l)
contains divergent waves only; that is,Yl satisfies the direct
principle of emission.

b) In addition to the priacipal term, rhe asymptotic solution
to the function @2 contains convergenl waves only; that is, &,

satisfies the reverse principle of emission.
If, in addition, the following conditions were carried out,

3. a) The function Yl is the solution to equation (1) which

characterizes scattering,
b) The function éz is the solution to conjugated equation (4),

then the variation of the functional I is proportionail to the variation of
the corresponding amplitude of scattering f in th~ function Y].

The reverse assertion which c¢-n be formulated as follows is also
justified:

If in the case of not variated and variated functions conditiomns
1 and 2 were carried out; if in addition, in the case of arbitrary

variations 8Y1 and 6@2 which decrease at infinity more rapidly than -2

r )
the variational fuanctional I equals 0, then condition 3 is fulfilled.

After proper corrections this formulation of the variational

principle proves to be azcurate in the case of more general problems in
collision theory,

§7. Elastic Scattering of Electrons By A Complex Atom
And Calculation of Exchange 134

The variational principle which was formulated in the preceding
section may be generalized in the case of a ccllision between electrons
and atoms. For the sake of simplicity and concreteness we will, hence-
forth, consider collisions between electrons and atoms of hydrogen;
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however, after obvious generelizations the results will also be applicable
for more complicated problems.

The Schroedinger equation in a given case will have the following

form

Lw=<v12+v22+-rg-+§--
1 2

-‘-2—+k2-1>‘1’(?,?)=0, (1)

r 1 2

12
=L 2
E = 5 tk 1).

The complete energy E consists of the energy of the bombarding electron
2

%r and the energy of the hydrogen atom in the fundamental state Ey =~ %.

We will assure in this section that the energy of the bombarding
electrons is not sufficient to excite the atom; that is

2
k. e 2L1_1_3 .
7 B -E =5-8%%" (2

7

Then the wave function will have the following asymptotic form

( TR Lol S |
. bg () |e + £ (v, n,) —-—krz Jp Ty
(1, rl’ r2) ""* 1k1'1 (3)
(x,) g (5, 5 2 r, -
Yo (¥ 2 T, 1
.
whereby the wave function of the fundamental state of hydrogen /35
=L T :
ﬂo = 7= e~ satisfies the equation
2,2 ,
(F+2-1D)y, @ =0, ()

as well as the condition of standardization and is a material func tion.
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The scattering amplitude £ (v1 and vz) characterizes the elastic
scattering and g (v] and ;2) characterizes scattering with an exchange.

As a result of the similarity of electrons, these processes are dis-
tinguishable only if the spins of hoth electrons are antiparallel. In
that case the effective cross-section equals

op =5 (el?+ lelh. (5)

If, on the other hand, the spins of the bombarding and atomic electrons
are parallel, then the coordinate function shculd be antisymmetric and
we obtain for the effective cross-section

g, ='JZ !f - g|2. (o)
k

By neutralizing all possible orientations of the spins of the bombarding
and atcenic electrons, we cobtain two cases of parallel and twc cases of
antiparallel orientations. Thus

=1 1 L1/l 2 1,42 Lo _ 12N _
T2t 2% 7 72 [£i%+ 5 lel"+ 3 £ - 8l”) =
1 2 2 1 e
=;3<|f| + lg|® - 5 fex - S x g =
1 /1, 2.3 ™1 4,3 -
=k—2-<z|f+g| +Z|f-g|)=zo +Z'0. (7)

We can see from this that, during the calculation of the effective cross-
section for a two-electron problem, it is possible to search first for the
coordinate of the wave function Y with au asymptotic form (3); this,
without taking into considcration the Pauli principle and the symmetry
properties, should be considered only during the calculation of their
effective cross-section by known amplitudes f and g. It is possible, /36
however, to consider the properties of symmetry from the very beginning

o
ad to look for a solution to equation (1) ¥~ , which satisfies the
condition

VE, ) =2 ¥ G, T (8)



and which has the following asymptotic fourm

L= = ikr
ikv.r

) i 2
1 ! 2 - =, 2 B
72- jro (.1) Le + fi(v, nz) kr2 —!, ]’_'2 - >
vt o ﬁ 9
k7T tkr,
1 I S e__ .
=73 b (r2) e + £ (v, nl) krl Ty .

A symmetric function corresponds to the full spin S = 0, the anti-
symmetric function corresponds to the spin S = 1. The effective cross-
section which was neutralized by the directions of the spins is then
calculated by the formula

- ™
£

Te 10
) (10)

2
{
i

+ 3 1 71 (42, 3 -
o + A c = —E{;I If ! + Z |f

. . . yE . .
Tt is obvicus that the functions ¥ can easily be obtained from the

function Y¥;

g

o~ 5 - _:_l_— - - - - 1
¥ (< rz) "/‘2'{‘1’ (rl, r2) + ¥ (rzs rl)} . (11)
We will now examine the ncticnal
=l 4 ;
(ﬁz, ¢1) i ﬁZLQI 'y de, (12)

whereby the asymptotic fzrm of the function ﬁl, Qz 1 analogous to the

asymptotic form of the fumnction Y

( fg ikr
w T 1kv-r2 _ - e 2.l
Vo () e tE ) e T
g, ~ 4 B ! (13
ig (rp) G; () Ty oo
~ (1=1,2
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where Fi’ Gi are certain arbitrary iinctions of the direction of the unit

vector n. First, it is necessary to convince oneself that the integral
I is convergent. For this purpose it is necessary to investigate the /37

behavior of the desired integral expression for large £ and large r,.

Utilizing the asymptotic form of the function ¢ (13), we obtain in the
case of large r

2
2 2
Lglw(vl + v+
- o ikr
_ikvw, -r 2
e RN SR AN AR SRR )=
1 2 12 2
- ikr
1k0 2 B
Ve .
=4, ap [(F -0 fer o (D) (e
2 hiy 2 T2

The terms on the order of r£3 are obtained during the effects of

the angular part of the Laplace cperator on the function F and a.so,
possibly, fron the consecutive terms in the asymptotic solution ﬁl. Thus,

the terms which are essential and the sub-integral expression have the
following form:

ikr = ikr
xp (F -2 ( 1y e T M1, e B (15)
‘*’o 1 F, kr, /\ 1 ke, J

If we should integrate in the beginning with respect to Y., then we come

to the calculation of the integral

o 9 T
} L L
[ ap (fz rlz> ar, (16)

which 2an be considered as a potential neutral system consisting of a
change wiiich is located at the origin of the coordinates and a change of

1,

the opposite symbol which is distributed with a density Yg (rl). In our

case, the integral (16) decreases exponentially and, concequently, the

convergence of the integral at large r, is assured. Similar reasoning

might 4also be applied in the case of large T
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However, this entire reasoning ir true only in the case of electron
scattering by a neutral satom. 1n the case of a scattering of au :on the

integral (16) will decrease only as rél, since the central and distributed

charges will not compensate completely. 1In that case it is necessary to
complicate the asymptotiz form of the function ﬁg in a manner analogous to

that used in Section 5.

We will now exanine the variation of the functional I, subst’'tuting
in it ﬁl = Yl’ ﬂz = Y7 {the correct solutions to equation (1) with an /38

asymptotic form (3)]. Thereby, in the case of Wl, we will have v = 31; in
the case of Yz we will have v = Vye In a given case the interaction of
the electron with the scatterer will be characterized by the material and

self-conjugated operator; therefore, the fructions Yl and Yz should

be the solutions to equation (1), alone. First, we will assume that
during the variation of the functions Yl’ YZ in the asymptotic form, oaly

the scattering amplitudes are subjected to a change.

ikﬁ'i.?z
WO (rl) Le +
ikr
Vv st~ d e (e Gy + o) B -y an
i T i"r 2 i ~ 4 : (Ui, n2) + i / kr2 I r2 - ) (L7)
ikr
S oo Ne
wo(rz) \\g(vi, n) + Big/' -;;I-, r, =
Then
_ nl‘. - . i. _
s1 = [| ,L8¥, dr) ar, R i i LR dr) R Y L8} dr, =
11 272
RZ -

= lim [ f dr r BY.LY, dr. +
r éR 1 T

i 1k, 47y
Ry - 1Ry 2£R2

. R, = x
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r Fy S Sy )
+ ] éR dT2 i iﬁ \?2 arl 6?1 SYI 5r1 Y2) dS1 +
22 1
r r O : L ow Y e ]
+ o dr | <Y2 -6, - oY, 5= ¥,)ds, |. (18)
L | o™ 2 2

The first integral equals O since YZ sarisfies equation (1). In
the second and third integrals we can substitute instead of YZ and 6Y1
their asymptotic expressions. Then, the integration,with respect to the
volume and surface,can be made independently and the volumetric integral
of YOZ tends within its limits toward unity. In the case of large

values T the functions Y_ and 6Y1 contain only the divergent waves and,

2
accordingly, the surface integral by dS1 will also become zero. The

integral by dS, does not differ at all from the integral (6.13), which

2
was calculated in the preceding section. Thus,we obtain 139
r — - -: —_ _-9_1'(._\ - _-0
dI LYZ (rl, rz), Yl (;1, rZ)J = K of (ul, v2). (19)

If, instead of the function Y (? s p ), we would substitute in the
2 Y1 "2

functional the fun-tion YZ (?2, ?1), then by repeating the derivative we
obtain

- - \ - - ] _ _ bx - - .
o1 [¥, (&, T, ¥y Gy T | = - Fog Gy, 9. (20)

If, in the functional I,we would substitute {he wave function Yi Yi, then

1’ "2
by utilizing formula (11), we will obtain

51 (‘Y:;, ¥ = - ‘;—“ s (5, - 7). (21)

4

By utilizing formulae (19) - (21) it is possible to comstruct the
functionals J, which give a stationary expression for the amplitudes f

and g or the amplitudes fi, in a manner analogous to that used in Sectioms
4 and 6 for more simple problems.
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However , the variational principles are applicable in practice to
a very limited class of problems in this form. Actualiy, by variating
the functions Yl’ Yz, we assume that the wave functioan c¢f the fundamental

state of the atom &0 remains unchanged. Consequently, in order to write
the function ¢. which we can substitute in a function.l I, it is necessary

to know precisely the wave function of the fundamentzl state of the atom.
This is possible only for the case of a collisicn betw en electrons with
the hydrogen atom which was examined here. If, om th. other hard, we
attempt to substitute in T the function with an approximate wave

function wo = ¢0 + 5#0, then in the case of large Ty T, the function Lﬂl

will not decrease and the integral will diverge.

This difficulty can be overcome if we assume that, simultaneously
with the variation of the function LIE the operator L also variates so

that the functional remains convergent. For this purpose it is necessary

that the operator contain, instead of 2E6 = - 1 the value 2E6 j ;6

(' V _/ wo dt which differs for various functions. Such a changed /40

operator L should, therefore, not be considered during the calculation
of the first variation I, since from the variational prirciple for a dis-
crete spectrum we know that the variation 8E = 0 under the condition that
the standardization of the function wo is preserved. 1In that case

ikv, .7
i~2
6y (x)) + 88y |e +

ikr

‘i’i =‘yi+ 5fi~ 4 + (fi+ Bfi) ] » Ty @, (22)

[y (ry) + BY,] (g, + 5g,) )
\

It is easy to convince oneself that in formula (18) for 5I in the first
surface integral, which was already calculated in Section 6, one more
term will be added.
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%' ikr

: , ikv, T )

. o - porp MY - ™
- lim lR WO (rl) Swo (rl) dTl J L(é + £ (v,, n.) %
R = r <Ry 7Ry 2

j 7 ®

5 e, ikr L 'kr

» 9 /élkvl.rz + f(v,, n,) = 2\*- (élkvl.rz + £(V,, n ) 2\ X
: * o, \ 10 % Tk, /TN 1’ /

: ikr

> kv

* 3, (e R AN ke, /| B2 (23)

By calculating the surface integral with the method which is analogous to

ey
% that already applied in Section 6,% we obtain zero and, thus, the external
? form of the variational principle changes once again.
'5‘ 4 -
¢ BT (¥,, ¥;) = - 3 of (v, - V,). (24)
However, the functional I has already a sowewhat different form
; v _ T 2 2 2 . 2 _
i * (¢2’ Py = JJ gZ 5 sttt T, P
2 2. = _
- ==~+ k" + 2E) 4. dr, d7,; (25)
o T 1 1 2
£ 12
% where [41
: \ s -
T g (rl \e + F (nz) krz > r2 ® .,
A
: 2 kr (26)
L 4 oy & oo -
% Lﬁ (rz) G (nl) kr 3 rl @ ’,
: 1
&
¢ *
3 This type of integral is examined in more detail in Chapter III.
§
;

e
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ﬁ(;) satisfies the condition j Iﬁ (;5i2 dr = 1;
E=|m(-37 -1 0a, (27)

and the variational function is determined by formula (22).

It is also easy to formulate the variational principle in a
similar form for anm elastic collision of electrons with any given multi-
electron atom.

§8. Variational Principle for Inelastic Collisious

In this case we will proceed in accordance with a fundamental
idea which was expressed in Section 6; that is, we will examine the
variational functicnal

- 4 -~
J"i’z - E) Y d,

substituting, instead of Yl, the wave function which corresponds to the
original state and, instead of Yz, the wave function which corresponds to
the final state. In order to avoid cumbersome definitions we will

consider the collisions of electrons with hydrogen atoms, as before.

If we assume that before the collision the atom of hydrogen was,
generally speaking, in a certain excited state with the wave function
w (r), then the corresponding wave function which satisfies equation

(7.1) will have the following asymptoti~. form.

( . iki'{z'-?z
g, (r,) e +
i 1 .
ik r
o - - - e n2
(1) 2y 4T )8 ) £ (v, ) S, o, v,
¥ o; rl, r,) { L, "n 1’ Tin 2 ko, 2 (1)
iknr1
Zﬂ ) g, W, n 1)-3;—[—1—, ry oy
\
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where ¥ (Y) satisfies the equation 142
(LLlg2 DNy .
2V r//¢£ Enﬁh, (2)

and the wave magnitudes kn are determined from the law of conservation
of energy.

k 2

n -
5~ + E =E. (3)

The scattering amplitude fij (31, 32) determines, at the given total energy,

the probability for scattering of a particle with direction V. to a new

1
direction 32 with the atom making the transition from the i state into

the j state. The amplitudes gij determine analogously the probability

of an inelastic exchange scattering. The differentially effective cross-
section of the inelastic scattering is determined by the formula

(v, ¥ (4)

ij

Integrating with respect to ;2 (the direction cf the scattered electron)

we obtain a complete cross-section for the given inelastic process
1 i —’—.' 2 .
v) = .. (v, v dw' .
; ® Kkj|f1j<, )% dw (5)

Finally, the cimplete cross-section of scattering will be obtained after
the ~ummation by all possible finagl states, taking into consideration the
exchange.

) 1y |2 <0y (2 |
o) 1% Jlfj(v )| dw+f|gij(v y | dw_’ (6)

Equations (4)-(8) are true if we consider both electrons as distinguishable
particles; that is if, for instance, the projections of the spins of the
bombarding and atomic electrons on the z axis equal, respectively,+ 1/2 and

- 1/2. A calculation of the symmetry of the wave function can be accurately
conducted exactly as was done in Section 7, and we will obtain, for instance,
the following formula for a complete cross-section which is neutralized /43
hy the spins of both electrons:

.
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¥

- 1 NVTL o o =02 = = v 12
a; () = ﬂ_.k,LZ J!fij (v, v')l dw' ] Ifij (v, v")| dw'] =
|

S

1Lyl JL > T oy 12 '
"k Zka [4 f |fij W, ') + 8 ; W, v'|° do' +
j

:1 ¥ I - -—)' - - —0' 2 '7
+ g l ‘fij (v, v") gij (v, v )] dw It (7)

The symmetrization of the wave functions Y(l)i might also be obiained from
the function Y(l) by formula (7.11).

Let us assume that. equation (3) can be carried out only when
i < N, that is

Egeq < E- (8)

Then, the energy of the bombarding electrons is sufficient to excite
only the first N-1levels, ionization of the atoms is impossible, and
sums by J and n in formulae (1), (6), and (i) contain only a finite
number of terms. If, on the other hand, the energy of the electrons is
sufficient to ionize the atom then, in addition to the summarization by
the discrete states, the integration bv the states of the solid spectrum
should be conducted in these Ilormulae.

We will examine an inelastic scattering of electrons which is
characterized by the amplitude fij (vl,-vz). Then the wave function
Yl(l), which corresponds to the original state and which is substituted
in the right pért of the functional, should have an asymptotic form (1)
with v = Vq- In accordance with the rule which was brought out in

Section 6, the wave function Y,, which corresponds to the final state,

2
should have the following asymptotic form;
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nl
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We will calculate the variacion of the functional la4
= ([ v(D (1)
I JJ Ly aran, (10)

where the operator L has the same form as in Section 7. We will, thereby,
assume that in the asymptotic solutions of (1) and (9) only the amplitndes
fij and gij varv. The convergence of the functional of the variated

. W(i) ¥(3) . , .
functions 1 2 Yz can be froved in the same way as was done in Section

7. Essential in the given cise is the fact that the complete encrgy of the
states, which corresponds to each term of the asymptotic resolution, is
identical. Mainly, thanks to this fact and as a consequence of the
orthogonality of the atomic functions wi (r), all divergent parts in

integral (10) are eliminated.

The variation &I is also accurately calculated in the same way as
was done in Section 7; however, during substitution of asymptotic func-
tions Yl, Yz into formula (7.18) it is necessary to utilize the formulae

(1) and (9).
After substitution,we obtain
L -ikv, T
81 = lim { dr R/w * (r.)e 22 +
R,-® °r L L 1
17° R TR

R,~®

2

Nk o eiknrz
' -—+ -
+an(r1)fn( Vor ) Ly >x
n n 2
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ik r
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_ku ik r
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| 1 %* 2 oL =y el
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T % 1™ n n
_ ik r
-l = 5 o e ml
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. ik r
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- ik r
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It is easily convincing that during the transition tc the limit
sone of the terms eliminate themselves reciprocally, and part disappears
as a result of the orthogonality of the function Wj- In the final

calculation a nun-zero contribution is given only by the term

" -ik ¥, .2
brEp e 1727 (12)
and the function ng) and the term
ik .r
by @ oy Gy, 7y S (13)
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and the function 3Y

iy . .. .
§ ’, Jalculation of tu= integral is conducted exactly

as ir Sectinn 7 and we obtain

k'

If we exchange vositions of the srguments, 1 and ;Z ip the function
fz(J), ther we obtain, analogously

= T y@@® = = i) ~» = -
SI & J YZ (rz, rl) L Yl (rl, r2) dTlde

4 - -
=" l\‘: 5gij (Ul’ "’2)‘ (15)

J

Fror these formulae we immediately obtain formulae which are gnalogous to
(7.21) for symmetrized functions and amplitudes.

It was assvmed up to now that the atomic wave functions Yi in the
g (D
1

asymptctic expression for and YgJ) do not variate. Just as was done

in the case of elastic scatteiing, this formula can be generalized in the
case of the variation of the function *i' The convergence of the func-

tional from the variated frnctions in *“his case can be assured if,
simicltaneously with the change in the fun~tion wi, we also change [46

the wave numbers ki in such a manner that we preserve the equalities

2
~ Y ~ k.

In that case, the divergent numbers in the subintegral expressicn dis-
appear. If. in aadition, the conditions of orthogonality and standardi-
zation are carriced cut in the case of the variated functions as was done
before, then the expression for the variat’on 85I remains unchanged. This
type of variation should be considered if the atomic functions ¥, are not

accurately known. Investigation of this type of variation is also
necessary with the conclusion drawn from the virial theorem (see
Chapter IV),
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In the process of formulating the variationel principle Ffor this
giver problem we have, in fact, never utilized the concrete properties of
the hydrogen atom. Therefore, the formulation of the variational prin-
ciple (14) represents a general formulation for arbitrary inelastic
collisions.

Thus, by formulating the variational principle for various
specific cdses, we obtain certain functionals, which are stationary in
relatior to a broad class of variaticns, in the case when the variated
functions satisfy the Schroedinger equation. To be exact, these values of
physical interest, in this case, prove to be stationary, i.s., che
phases and amplitudes of scattering just as in the case «: a discrzate
spectrum when the average energy of the atomic system was staticnexr.
Such a circumstance is n-rticularly essential during the deve.uiment of
approximate methods for -he calculation of all these values.

The investigated . ormulation of the variational principle feor
elastic and inelastic cnilisions in this chapter was briefly discussed in
the paper by Kohn (Ref. 13 . This same formulation for concrete problems
of coliisions between c¢lie:.rons with hydrogen atomc was presented later
in the paper by Gordon and Jones (Ref. 37).

The possibility of variation of acomic wave functions in an
asymptotic form of a complete wave function was discussed in the
dissertation by this author (kef. 38).
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CHAPTER II

~~
£~
~}

PELATION BETWEEN VARIOUS FORMULATIONS OF VARIATIONAL PRINCIPLES
AND THEIR APPLICATION IN COLLISION THEORY

§9. Relation Between The Variational Principles
By Hulthen and Kchi

We will prove that the formulations <t the variationmal principie
i1 Section 3 and in Section 6 are equivalent, if the potential V (r) is
spherically symmetrical; that is, if the forces are of a ceatral nature.

In that case, the functions Yl and ¥, in the functional (6.8) may

2
be resolved with the l.egendre polynomials, as was done in Sectiomn 4 (4.3).

~s

In the case of the variated functions Yi,we obtain
¥, =Y, + 8y, =
i i i

21, +87,) o .
(2:+ 1) ie ey (ﬂz + 5¢£) Pz (oi - n). (1

The solution of the variated scattering amplitude f is obtained from
formula (4.4)

. =f. + 8f, =
i
i 2i(N + &)
— 1 4+ O
=LY ;! 2 £ 10 T oL
—212(2;z+1) i [e 1_|P£ (v, * m. (2)
=0
We will substitute the solution to the function ?i in the [48

functional (6.8) ard we will separate the integration with respect to
the aungles.
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+0' i Hi
249 1(T1£+T]'Z,+6,£+5T]E,)

1,, ¥) =) @+ @+ S0 e x
£,4'=0 k
T‘ l’dz 2 L' (' + DT
x| (b, +0) '—=+ k- V(r) - (b, + 0% ) dr x
J 2oy 2 2 J e s
r r
0
{1 - . - - {—l . -, 1, 2
x| Pz (vl n) rz\v2 n) dw. (3)

In the last integral the integration is conducted with respect to all
directions of the unit vector n which can easily be calculated if we
utilize the theorem for addition for the Legendre polynomials

r — -
i . 0
| PZ (u1 n P

@, - n) dw = .8 A

L YA

The radial integral in the expression of (2) converts into zero in the
case of the invariant functiocns *z' Therefore, during the calculation

of 81 it is not necessary to take into consideration the phase -rariatiom
in the exponential multiplier. We will obtain

o

~ 280, L
o1 =‘ZJ (22 +1) (-) e k 7 4xn PZ (vl . v2) ®
£=0
» 2 ~
x i oy ) (oo LB DY sy ar. (5)
J J2 2 \er 2 /3 !

On the other hand: as a result of formula (2), the variation 5f may
be stated as follows:

2 247,
8¢ (3), - ¥, =Z ¢+ e *om, PG, -7 =
£=0
c—a Zi‘n’e z -y -3
=) @+De P, (PP G V). (6
4=
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Ve will utiiize the variational principle as formulated by Hulthen.
The radial integral in formula (5), according to (4.29) will equal - /49
kFﬁI, and we will thus obtain formula (6.16)

_bx

ol = "

Sf (5’1, - 5’2). €

Vice versa, by substituting in formula (7) the solution of (1) and (2) and
by comparing the coefficients at identical Legendre polynomials, we obtain
the formula (4.29)

. 2 -
| (¢£+5¢»‘f-‘i—+k2-v-uu—ll/:(wz+a%) dr =

J £ ‘drz r2

= - kBT . (8)

In an analogous way more complicated cases can also be proved. We
will examine, for instance, excitation of the first (2s) level of a
hydrogen atom by an electron with a moment of 0, that is by its s-wave.
If we consider the electrons to he distinguishable, then the wave functions
Y}, Yz will have the following asymptotic form;

4 -

ikovl-;2 — . - . Piknrz
¥ (rl) e + >__ fOn (”1’ “2) v (rl) e
a w2
Y:EO) ~ < 1‘2 - ® , (9)
~ o B eiknr1
Z,gOn (vl‘ nl) qI"m (rz) —Enrl ’ L ;
n
\
( 1k, V. T, ik _r
* 172772 ¢ - - e N2
¥y (x)) e +Zf£1 (y, ny) ¥ ¥ (r)) —
n n 2
(1) 4
Yz ~ r2-.co ’ (10)
ik r
S gl (5, B ¢ (E’>en1 £, =
L5501 Y72 VY Y Yy kx, ? 1
Ln nl
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If we resolve these functions with respect to partial waves and if we
define the resolution coefficients of this scattering amplitude fOn’

] t . 2 .,
80p fln’ 80 by the Legendre polynomials, respectively, through N
! ]
dOn’ “1n’ dln’
following asymptotic form:

. 150

then the wave function for the s-scattering will have the

) S ik r
( sin knr2 S‘ e n 2
. (r,) ———=+ ) C ¥ {r,)) = ,
0 1 korz . Cn "n i Knrz
n
(0) .
YlS < r, , (1))
o .
.i elknrl
L dOn *n(rz) kr ? S TR
L nl
n
[ sin k,r 5 ikan
R \1 2 N L .,* e
() TR + chann ) %1
172 n2
n
(1) < -
YZS rz - s (12)
S ikpr1
T ‘ * e L .
2J°1n Wy (ty) T 3] :
g nl
n

whereby in the formulae of {11) and (12) the
only in respect to the s-state of hydrogen.
principle for inelastic processes, which was
we obtain

rl 1‘2 r

(D) (2, g2, 2, 2 .2 .2
S} JJ YZ v + 9 + + + k

12

Y ¢ s
= k, 55, (Vs

From this,we easily obtain:

-—

summarization is conducted
From the variational
formulated irn Section 8,

W () -
0 ¥/ Yl dTl d'r.2 =
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f.'l
5 | D (2,2, 2,2, 2,
J 28 1 2 ry r2 r12

2

+ ky - dr, = -

N (0)
{) Yls dt 2

xwp
Y

5. . (14)

1 01

1

This formula can also be easily obtained directly by calculating the

functional I(Y;:), Y{g) and by utilizing Green's formula.

In such a form the variational principle is convenient only for
concrete additions, since, in practice,variational calculations are /51
concucced only in the case of slow collisions in which the first parctial
waves (¢ = 0.1) play the principal role.

The relation between the variational principles of Hulthen and
Kohn investigated here was mentioned in the works of (Ref. 37 and 39).

§10. The Variational Principle and the Excitation Theory

It is a well known fact that the principal formulae in the
stationary theory of excitation from related states might be derived from
the variational principle. Analogous results can also be obtained in the
theory of collisions from the scattering amplitudes and phases, if based
on the stationarity of the corresponding functionals.

Let us examine the equation:

W+l -y -y @ =0, (1)

where the operators VO and V should satisfy the same conditions as did

the operator V during the derivation of the variational principle. The
operator AV will be considered by us as excitation. The solution to this
equation depends on the parameter A and should have the following
asymptotic form:

iky.r - -, eikr
+ £ (A, v, n) ol (2)

v, T;a ;) ~ e
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We will resolve the functions ¢ and f into a series along A\ degrees.
b0, U, =y (0, D)+ N (0, T) +
n - -
+ -« -+ A L (v, x) + -« « (3)
£, v, ) = £ (U, m) + A (U, B) +
n
+ ¢« N\ fn w, n) + - - .. (4)

Then, for the function wn,we obtain the system of equatioms:

2 2 .
(V2 + k% - V) 4y =0, (5)
@+ -v)y v =W (m=1,2, - - ) (6)
07 *n n-1 >
and these equations will bave the following asymptotic form: [52
Skp oo eikr - eikr
oo T E am) S g~ £ LW S ™

If we should limit ourselves to the n+ 1 term in the succession
of formulae (3) and (4), then we obtain the approximate functions:

n

V@ o8 D =) Ay, 6D, (8
i=0
n

o, 8B =) Al @, W, (9

i=1

which we will call, respectively, the wave function and the scattering
amplitude in the ntP approximation.
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We will assume that the series (3) and (4) for tlie functions for
4 and f convergs. This takes place if N is sufficiently small, k is
sufficiently large, and the operator V decreases sufficiently fast with
the increase of r. A rigorous examination of the convergence of such

series has been conducted so far only in the most simple cases (see, for
instance,Ref. 40).

We will assume now that the solution to the unexcited equation
(5) with its asymptotic form (7) is known to us in the case of all values

En < 0).

of the vector k = k?, and ezlso for the related states (ki 2

Then we are able to construct Green's function G (k; T ;') for
3

the operator V2 + k2 - VO’ which satisfies the equation:

(V2 + K> - Vo) G (ks T, ') =8 (f -1"). (10)

The solution to this equation may be stated as follows:

G (k; T, ') =

'2 * - - - -
j 2dk k:Z wO (k', v, 1) ¥o k', v, ) dw +

!

(Zh 3

¥ E,T) &, E_, D
e e (11)

k™ - E
n

where the internal integration is conducted with respect to all directions
of the unit vector v and,during the integration by k, the integral should
be considered as a contour integration in the complex plane k', and /53
should exclude the pole at the point k' = k.* Only with such a selection
of the integration method can we obtain a solution to the heterogenic
equation which, in the presence of large Ty, contains only divergent waves.
The function of the related states ¢0 (E , ¥) satisfies the equations:

*
In the case when tbe energy operator H has only a discrete
spectrum, Hwn = Enwn’ then Green's function will have the following form:

G (E; ;, T = g W: (?') wn (;)/(En - E). When E = Em’ the m-diverging

texm of the sum is excluded. This requirement is analogous to selecting a
path during the integration with respect to k' in the formula (11).
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(VV+E_ - V) 4, €, D =0. (12)

By utilizing Green's function we ere able to transfer the last term of
equation (1) to the right hand side and, considering this term as being
formally heterogenic, we can state the solution in the following form:

n

¢ (1) = Vo (X) + xdl G (T, ¥ V (") ¢ (¥') dr'. (13}

We will solve the resulting integral equation with the method of
consecutive approximations, using the function ¢O in the capacity of a

null approximation. We will thereby automatically obtain a series

R n . .
resolution by A° up to A, for the n-apyproximation.

Thus, during solution of the integral equation the n-approximation

s . . n) .

coincides with the wave function ¢( ) in formula (5). As far as the n-
term of the series solution is concerned, we obtain the recurrent
formula:

b ® =6 G VE 4 G ar
(m=1,2, ). (14)

We will now show how to obtain an expression for fn (U, n) by

utilizing the variational principle. For this purpose we will examine
the functional (6.19):

J (5;522 gl) =
S,k 2, .2
EETCEARY - E AR SR AL N AN A (15)

the stationarity of which was proven in Section 6. We will mention L34
that,during the calculation of the variation of this functional, we have
disregarded the integral f Bﬁ, (V2 + k2 - V0 - AV 5¢1dT in formula (6.11).

This expression reduces Lo zero if either Sﬁl, 8¢2 equals zero, which proves
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that J(Z,, ﬁl) will yield an accurate value for the scattering amplitude
even in fthat case when only the accurate solution to equation (1) was
substituted instead of one of the functions ﬁl or gZ, In that case the

second function might be any given function; it is required only that
this function should have a proper asymptotic form (6.18).

We will substitute in functional- (15), instead of ﬁz, the accurate
solution W(;Z’ ?) and, instead of ﬂl’ we will substitute the solution

WO (;1: ;)- Then, by utilizing (5) we obtain:
i (hl, Vys T uz) = fo (vl, - vz) -
}\.k . -, -, -3 -
VG DY@ b G D ar (16)

Analogous correlations in which the scattering amplitude of tt2
phase is expressed by an integral which contains the accurate wave
function might be obtained for any given problem in collision theory.
These correlations are known as common integral identities and are
broadly used in theory and in numerical calculations. 1n all cases the
integral identities are obtained immediately from the corresponding
variational principle using the same methods as in equation (16).

By substituting solution (3) in formula (16), we obtain®:

£, G =) = [ G D V@ 4, G D e, an

(n) — - - - - - -
f (vl, vz) = f0 (vl, v

2

- Z—H" ¢ (@D (5'2, BV @ ¥, (v., D dr., (18)

*

Henceforth, the functions under the integrals will not be provided
with the symbols 1 and 2 in this and the follcwing sections; the function
on the right side will correspond to the value ¥ = Vys and the function

on the left will correspond to the value v = 31.



55
We will now substitute in the functional (15), fnstead of /55

Z., the function wz = w(ﬂo (UZ’ t), and instead of ﬁ , we will sub-

stitute the function ¢1 = w(n; C) vy r). Then, by utilizing equations (5)
and (6), we w'll obtain

J (w(m), 1l[(n)) =
= £(™ (Vs - ) + 4,1; ] ™ % 41 - Vo - AV) y ™ 4 =
o+l
- £(® CHETIEE 1‘—;;{-1‘-0[ v vy ar. (19)

In that case the expression obtained will be polynomigl in relaiion to A

of degree m + n + 1; the variations J of the integral j&wo (V2 + kz -V, -

4]
- AV) SgldT,whlch were dropped during the calculation of the variation J,
will be on the order of A w2 and, thus:
+ 1
(m1) A0 R r y ™ :
f (ul, v ) (v vz) R Vi dr; (20)

fntn+1 V10 TV S
= - qu v 0., D VT 4 (v, dr (21)
¢ 'm ~2° n 1’ '

That same result can also be obtained directly, of courre, Ly utilizing
equations (6) and (17) and the condition: .

[4, G D e vy, G, D dr =
=y, G D Py g Gy, D e, (22)

m,n=1, 2, 3, « -
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In this manner we can see that by knowing the function ¥ (v R T) in the

2
th . . . - oy . . .
m  approximation, and the function § (v, r) in the nth approximation,

it is possible for us to obtain the expression for f in the approximation
m+ n+ 1.

Of particular cignificance for numerical calculations is the first
approximation in the theory of excitations. In that case the expression
for the scattering amplitude has the following form

D =~ =y
f \01, vz)—
f (@B, -9y - @D Ve G, D) dr (23)
(LR B 2 e i O 727 0 V1’ ? 4
and it is necessary to know, for calculation purposes, only two /56

unexcited wave functions for these values of v whichk are included in the
desired amplitude. Both of the following approximations in the formula
for the scattering amplitude tncluded Green's function, the determination

of which in the case of the unexcited operator, Vz + k2 /Y is usually

a very complicatqd problem.

We will now examine a very important specitfic case when the entire
potential energy operator may be considered as excited. In that case

vV, =0, =e s £, =0, (24)

¥

Green's function for the unexcited problem (the operator V2 + kz) can be
calculated in this obvious form

G (x, ") =~——l:.—.4,—|~ (25)

In the theory of excitation, the method of successive approximations is
known as the born method. Particularly in the first and second approx-
imations. we obtain

~ikv. .t ik?l.{»’

(D-_MS.J' 2
fb = - andl ® Ve dr, (26)
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— -
2 - wikv,..T

f‘()Z) =f§1)+—)“—'k—2fe 2 v @ =
2
ik |[z-z| ikv, ¥
X V(') e dr.dT,. 2n
R -3 ~ 12

If the operatcr V(r) is spherically symmetlricai, then in formula (26) the
apgnlar integration can be easily carried out and we then have

fél) = - i irs—l-}rﬂ V (r) r’ dr, (28)

where a =k (5'2 - 31) , and q = !fﬂ . Finally, the accurate formula xor

the scattering amplitude (16) will have the following form

£, mv,) =-30 1 ¥y, 1) Ve dr. (29)

All formulae obtained here are for a three dimensional problem./57
However, if the operators V0 and V are spherically symmetrical, then the
analogous considerations ana formulas are sujtabie for a ope dimeneiLual
equation

2
(LA LED g AVl ) =0, - (0
“dr r2 -

¢ () =0, wfvsin(\kr-‘%&+n); (31)

if the <olution tc the unexcited equation is known

2
K W N ¢ . 20 Y . _
[drz + k 2 Vo (r)] by (x) =0, (32)

by ©) =0, uy =sin(lr - LE+ Ty - (33)
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By utili&ing the variational principle which was formulated in
Section 4, it is possible to repeat all comsiderations of this section
for a cne dimensional problem. The phase expiession in the first
approximation will h:ve, for instance, the following form

fos)
(1 A ) . ’
D =my -2y vy ) ar (34)
0 .
In the Born approximation
1 ﬂEr

Vo =0, Tp =0, 9=y Ty

0 /2 (kr), (35)

where ID (z) are the Bessel fuvnctions. Then, in the first approximation

L _ . x
T =-r-3)
0

©
n

[E 1, (0 V@ [/?1 (kr)} dr.  (36)

4172

If the operator V (r) is a function, then we arrive at the common formule

[+ 2]
(L) gf -2 "
Ll b = A 2 vV (r) 1,+1/2 {kr) r dr. 37
0
We will mentioa that in coliision theory the basic formulae [38

for successive approximations and the theory of excitation have a much
simpler form than analogous formulae for related states. This is caused
by the fact ttat in the case of problems of o discrete spectrum the
heterogenic equation (H - E) § = F has a solution only under the condition
of orthogonality of ~he functicn F toward all solutions of the heterogenic
equation (H - E) ¢0 = 0. Therefore, when sclving (by means of successive

approximations) a sy:tem which is analogous to the system in (5), we
should always conduc: urthogonalization of the right part (from which the
energy valuc of the related state in the following approximation is
obtained) . In the rroblem of related states this does not give a
possibility to construct a simple recurrent formuia for ¢n’ which would

be analogous to formula (14). In addéition, contrary to the problem of a
discrete spectrum of the energy operator, it is not necessary to pay any
special atterlion to the case of degeneration in the colilision theory,
if only one particle is heing considered.
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Lll formulae which were derived in this secticn may also be genera-
lized for more complicated problems concerning thie collisio. cf electrons
with atoms: elastic, inelastic, and ~xchange scattering. Due to the
complexity of these problems, a fundamental value must be assumed in the
Born method. which quite ofter permits carrying out calculations in the
first approximation to the end. In that case wave functions, which
‘correspond to the initfzi and final states in the null apprczimation, are
substitutzd in the stationary functicnal, that is, in the form of pro-
ducing a plane wave, which characterizes the bombarding particle, on the
wave functicn of the atom in the proper state.

If we should substitute in the functional wave functions of the
null apprcximation, which were symmetrized beforehand in accovdance with
the Pzuli principle, th2n we obtain the scattering amplitude in the Born-
Oppenheimer approximation. The question on the applicability ot the Born
method and the Boran-Oppenheimer method to the problem of s:atteriirg of
electrons by atoms is discussed in detail in Ref. 41.

The relation between the variational principle and the Born method
was pninted out in many papers (Refs. 12, 16, 29). The formulae in the
theory of excitation for a phase were obtained somewhat differently in
the paper by Makinson and Turner (Ref. 28). In that same paper /59
expressions were obtained for a phase in the second approximatican.
However, the formula obtained by them is not analogous to the standard
formula for energy in the second approximation and does not permit
generalization for more complicated cascs.

§11. Variational Principles Based on the Integral
Equation for Wave Functions

If we take as a basis the integral equation for a wave function
(derived in the preceding section) then it is possible to construct
functionals which are stationary in relation to the variation of accurate
wave functions; that is, it is possible to obtain a new variational
principle. These functionals differ, essentially, from the Hulthen-Kohn
functional in Chapter I. Just as before, we will examine equation (10.1)
of the preceding section, assuming for siwplicity A = 1, which does not
limit the generality of our reasoning in any way. 'n order to aveid
cumbersome formulae, we will introduce the following simplified definitions
for the integrals which contain the wave functions, Creen’s function
(10.10) , and the excitation operator:

n

G"y =J{‘_ . .jc (<, ?1) v (?1) G (?1, }'2) ..

oV E PG GE L E) VED VG, T dry, L dT (D)
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(b ¥p) =jﬁ ty (0, DV @ *B.Gl’ ) dr.” (2)

In these definitions, the integral equation (10.13) will have the
following form

5 =4y + Gi. 3

The scattering amplitude f in feirmula (i0.16) will be as follows

k
f=f0 -Z:f-(‘b’ ‘;‘0)' ('5")
Thus, the desired value is (¢, wo), through which the scattering 160

amplitudes can easily be expressed. If, in the capacity of a nuil
apprevimation, we use the plane waver and fC = 0 (the Bo.n method), then

(b, @0) and £ c:.ncide in accuracy with the multiplier. “7or the

. . . th . ) ]
scattering amplitude in the n~ aprproximaiion we obtain .n these same
definitions

n) k - , ' n-1 £
f( = fo - bn l('l’o: \"0) + (Woa G‘L’o) + .0+ (\Jo: G ‘bOD] (J)
We will examine the functional
n
AL G, =W, ¢, (6)

and we will compute its variation, considering that: both functions are
accurate solutions to equation (3). We obtain

6A, = (b, G™oH) + (BF, 6™) = (b - yg, GV B 4
+ (5%, Gnul"lf - Gn~1 ‘l’o) = .= () - d’Q - ‘1',0 G = ¢o.
vee = wOGn-l, 8) + (&¢, v - ¢0 - G¢0 - e = Gn-l wo). (N

% -
The excitetion V (r) may, in this case, be considered as z wave
function during integration.

PRI T R S

o, A N b v e

i B R A A e T g



The right part of this express .on is also a complete variation and
we find oulL in tnis manmer that the functionals

L . . -1
B_= (¥, G9) = (4, ) + (b, 4o + Gyg + -+ + 6"~ yp) +

F g+ UG+ e+ S, W) .8)

are stationary in relation to the arbitrary variations of accurate wave
functions.

We will compute the stationary value of this functional
B (W, ¥) = (s ¥ =g - G = or =S T8y - (4, )+
n s Vs Yo 0 Y0 s W)
+ (b hpt Gigt e+ G g F (gt 4G+ e
FR! n-1 = i
¢ VOG ’ v) = (WO’ W) + (¢0’ ¢ = wo) +

+ (igs ¥ - g -G + et (s ¥ - Uy - Gy - e

Ce 6P =0 (e ) - (- D) (s ¥y -

n-2
- {n-2) (yos G¢0) -t (WO: G ¢O)- (9
Now, we will substitute, ir this functicnal, the function wo. We [61

obtain

B, (¥, ¥g) = (¥gs Yg + Ghg + <o+ G 4g) + (g, g +

T S R A R TR SR
s 1™ - g v (10)
where the expression ({, ¢0)(n) in accordance wich formulae (4) and (5)

defines the value (Y, wo) in the nth approximation of the excitation

theory. We will now construct the succession of the funciionals

C. =B ¢, =8B, -8B eve » 0 =B -~ B (11)

1 17 72 2 1’ n n n-12

-
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‘It is otvious that these functionals are also stationary in re'ation to
the arbitrary variation-of accurate wave functions. By substituting the
obvious expressions for Bn in (11), we obtain

" . ' n - -1 .
C By ) = By D - @y, g 4

n-1

+ (@, e + (g 7. | (12)

e

By utilizing (9) and (10). we obtain the stationary value Cn

TR E g,

st {C ) =C (b ) = (b ¥g) - (s ¥g) - (¥ CHg) = -

v g

e G R ) = ) - (s v T (13)
~and the approximate value
C (g vg) = Wy v ™ - s v Y. (14)
Thus, we finally find out rhat the Functiomals
D= £y - 1, 6P g - By, T E) + (4, Ty
0000 CVTT A + (g ¥ + (g ) +
e (Vs "% 4] (15)

are stationary in relation to the variation of accurate wave functions

and have, in the capacity of a stationary value, an accurate [62
scattering amplitude. If we should substitute in this functional a wave
function of a null approximation, then we obtain a scattering amplitude in
the awproximation (n+ 1).

An even more simple and symmetrical functional Fn is obtained

for the correction toward the scattering amplitude in the (n + 1)
approximation
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. k - ’; . - .
R, Wy B = - 52 [(QZ,TGH PP - By 67T 0 +

n-1 i, -

F (B, &y + (s 6T ) - g 6T

£ =F (g> Vg5 £~ £® _ge (7). T e

We will now prove that if in the functional Dn we substitute the

~(p)

function of p-appriximation y =1+G+ -+ + Gp) ¢0 for the f{unction

#., and instead of £, we substitute the function of the q-approximation -
1 2

w(q) =(1+G+ -+ + Gq) ¢0, then we obtain the scatterin, amplitude in

the p+ q+ n+ 1 approximation. Actrzily,
® WDy _ Kk
Dn (W :‘lf )?fo-l!-‘)'( (‘bog [(1+G+"'
e+ @ @ -6"h Qe+ e reY
+(1+G+--+P e vt e+ 6Y 4

+(l+G6+ - +¢C I bg) - (17)

The expression within the square brackets can easily be converted intc
the fellowing form

- :H.‘ - q+l - P+'1 - q‘*’l -

c* 1 [G — 11 G - 1) G —— 11 + G -— 11 + G — 11] +
-1 prgntl
¢t -1_¢ -1 _ .. 4 pptetn
i =1+G+ G . (18)
Thus,
k
b, ¢ @y mg - R e e PPy -
k nl
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according to formula (10.18). This same result can be obtained /63 -
immediately from the variational principle, since during the computation
of the variation of the functional D we have dropped omnly that term which

conained the product of the var1at10n ﬁ and ﬁ . From this, in partlcular,
it can be assumed that thP functional D (g ¢ ) will give an accurate

value for the scatterlng amplltude, if we substltute in it the accurate -
solution ¢ only in place of one of the functions ] s ¥,, and the second

remains arbitrary. Then we obtain
1 '[1'1 ;
f = fO "_‘ [(W: ¢" “w - W, G 2 + (4,6 vo) +

+ (4o G’“'1 D+ (gs ¥ + -+ + (s 6" 401 (20)

We will now mention the specifications which distinguish the
function Dn obtained here from the Bulthen-Kohn functional which was

explained in Chapter I.

First, the functionals Dn contain the Green function of the un-

excited operator, and consequently their obvious form depends on how we
break up the complete energy operator into excited and unexcited parts.
If we assume tnat V0 =0 and n = 1, we obtain tue Schwinger variational

principle (Rels. 15, 16, 27, 42).
1k| -T'|

D, (ﬁz, g = (4")—2 ﬂ ﬂ (@ V(@) -T—‘—?W X

T @) g @) drar 457, D VD g @ ar -

kY, .7 k iV, .
_k 2TV @D g @ -8, @O V@ e ir s
An ) © 1 4x 2
£(3,, - V,) =st b, @,, gp 1. (21)
1ko. -1 ikv, .

1

If we substitute the values ﬂl = , ﬂz =e in this

functional, then we obtain an expression for the amplitude in the second
Born approximation (2.27).
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The second important characteristic of the investigated functional

is contained in the fact that the functions, which are substituted in’

them, are mot hurdened by any particular limiting conditious, contrary

to the Hulthen-Kohn functional where the functions had to contain at [64

infinity only plane and scattered waves, Here the sub-integral expression

also contains, as multipliers, the fun~<tions (or operators) V of all

arguments by which the integration was conducted, and thus the asymptctic.

form of the wave functiouns is uaimportant. This makes it pnssible to use IR

partlcularly simple test functions in the var1at1ona1 calculations and o

serves. to 51mp11fy computatlon. -

i aahS f e 4 s B e
TS -

e

AR B wem T

N Sy

Furthermore, if the excitation V is a functiqn,.thén during the _ :zlg
calculation of Dn it is not necessary to differentiate the test functions. |

It-is possible that this will Le a definite advantage if the test functions - . -
are given in numerical fcrm“and the calculdtion is_conducted on computers. P

3

It should, however, -be ment1oved hat even. the051mp1est funct10na1

D1 contains a dual integration of an entire space, and the functlonal D

contains an n+ 1 multiple integration. This circumstance compl*cateb e

ot Lk
PR A R R

greatly the application of these functionals in numerical calculatioms. - A %
We will estublish a relation between the functionals D and the g

Kohn furctional (6.17)% , . !
= - T’ ” . N c 5,v> ; ?,

J (2, _951) 8y (- V) ke Y

Ji.f /) (V2 +‘k2 -V, -V g, th S kZZ’vﬁ <§

7 2 ] 0 i N A e A %

First, we will present the function 8, (- 32), which is included in this =~ “.7 L4

sz

functional in the form of an integral. If we utilize Creen's formula
and transform the surface integral by tbhe method examined in Section 6,
then it is easy to obtain i . R

£ [ 1wy Gy B v, - 87, Gy DI dr =

:

e R VR TR

= 3 - v\ - -3 ‘ ’ :

fo (Vl ’ vz: 81 ( 02) . . (23) ‘
’ - b
} |
5
; - ,
The relation between the Schwinger veviational principle (21) and @
+he Xohn variational princriple was established by Kohn (Ref. 16). Z
| ¢

e e O
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from which

- _ — -—o -l(-"'"‘ T. -— 2 2‘
g, ( uz) = £, (v, vz) in JLJO (Jz, r) (V" + k
V) B -8, (AP -y e, &, Ddr =
o 17 "1 o’ Yo ‘2o
= 3 -3y .-k T 7D vE 4 K2 - :
= fr) (Ul, VZ) l;,n_} ¢0 (VZ’ r) (V" + k VO) gl dr. (24)
Thus, the functional (22) migat be recorded in the feollowing form 175
= 3 >y ok 3 D (v K2 -
Iy B) = £y G T~ | 6 G D Pk
cvygodr -l g (P k® v -V g dr (25)
o/ 1% T ) 72 0 1o

We will now consider the method of successive approximations,
which is based on the integral equations (10.13) and (11.3), where in
the capacity of a function in the null approximation we will use the
arbitrary function . Then, after n-integrations

+ Gy + o0+ GB. (26)

We will notice that it @ is the accurate wave function ¢, then after any
given numter of iterations we will again obtain the same function. We

will n‘w prove that by substitutir the function g(n)in place of the
function Ql, in the functional J, we have the functional Dn' Actually,

n-1

2 " n
- V) (4g+ Gy + ---+ 3 4yt G ) dr -

[ 4p P+ &
- fgzz P+ k2 -y - V) (4 + Gy + ek 6™y
+ 6" dr = (g, ¥ + (igs G + o0+ (b, V2 40y +
(g, 6D - By, g - By GH) - e - (By, G2y -

-1 -1
- By G M+ By ¥ + (B, Ghg) + e (B, 67 Y) 4

* (8, &) = (B,y, "D - (7,, " P+ i, 6"y +
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n-1 , ,
+ (‘bos G )d) + ('&"0: \‘IO) + ("1’0: G‘#o) + e+
+ (.1. Gn~2 ‘L’O) . (27)
Here the obvious equality was utilized

lo, P+ -v)ycpar =, " n. (28)

Thus, we actually have

(n)y _
It is uot difficuit to obtain an analogous formula 166
1™, 5y =0 @ 8. (30)
Actually,
[y (‘72+k2-V)¢ dw-r(ﬂ: +ws+~-~+¢c“"1+
J Yo o) 1 J Yo ¥ Yo 0

2

+ g6 (V2+k “=Vy - V) ;51 dr = (bg + Y6 + -

co 4 wocn'l + gc", g - I (4,6 + = + wOGn'l +

2

+ g6 (v + k2 - T Lig + (B - ¥p)] d1 = (b + 4,6+

1 2

cee q,oc“' + g6°, B)) = Chg+ 96+ - + 1;0(;“' +

+ ;zf(;n'l, Bl - 4g) = gy g+ G+ o+ G2 4 +
+ (@, 6% - @, )+ Gy, )

+ @,y (31)
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It is also not difficult to derive the following formula

(m) (n)y _ - .
DP (gz ’ gl ) =D n (gzx zl)' (/2)

pmt

This formula contains formulas (29) and (30), if we assume that
Ny N

Thus, we have acquired a succession of functionals which possess
unique '"'group' properties (32). From among these only the Hulthen-Kohn

functional DO does not depend on the specific selection of an unexcited

operator. It can be seen from formula (32) that the functions Ql and ﬁz
in the functionals Dl’ D2, ... might have any given asymptotic form,

since the interation process itself secures a correct asymptotic form for
the function in the functional J.

The question arises as to which of the functionals D_ yields the

better result if we conduct a direct variational calculation; that is,

if we search for a stationary value of the functional in a certain
collection of functions. This question is directly related tc the problem
of convergence of the method of successive approximations. Generally
speaking, the iterative alogorithm converges for a broad class of 167
functions of the null approximation; howsver, cases when the tirst
iterations '"degrade" the fuuction and give a less accurate result for the
scattering amplitude are entirely possible. Thus, as a rule, by means of
a direct calculation the functional Dn will give a more accurate result

for the scattering amplitude the iarger n is, if the class of the variated
functions remains unchanged. Within this boundary

lim D (4,, #;) = £ (v, - v,), (34)

n-®
whereby the function @ is practically unburdened by any conditions.

However, in particular the case of small n, a reverse case is
entirely possible. It is well known that quite often the second approx-
imation of the Born method yields a poorer result for the scattering
amplitudes than the first approximation.

All results obtained here can be easily generalized to more
complicated problems of scattering of electrons by atoms, and are thus
mene general.
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§12. Direct Method of Phase Calculatior Based on the
Variational Priuciple (Reference 43)

The idea of approximate calculations based on the variational
principle in collision theory is the szme as in the case of problems of
a discrete spectrum. This idea is contained in the fact that we attempt
to satisfy the variational equations which were derived in the preceding
chapter, not throughout the entire space of variated functions, but of
a certain sub-space. During the celection of this sub-space (or class of
variating functions) we have in mind, first of all, the physical consid-
erations; that is,we strive for the functions to possess those properties
of the desired wave function which are known to us beforehand. 1In
addition, the selecticn of this class of functions is determined by
practical considerations of the simplicity of calculationm.

We will examine the simplest one dimersional equation /68
2 N
(S+ -V @ =9 (1)
dr /
r
¥ (0) =0, (2)
t ~ A sin (kr + ). (3)

According to the formulas in Sectior. 4, the variation of the functional

I () Jm(r)(—ﬂc -V)dx(r) dr (4)
. d

equals

BT = - AZKS. (5)

By substituting in the functional (4) the function

g (cl’ CZ’ ey Cn; M 1), (6)



70

which satisfies the conditions of (2) and (3} at any given s M. The

normalizing coefficient A might, geacrally speaking, depend on the
parameters ¢ and 7). By calculating the integral we obtain a certain

function of the parameters c cer . c_, M.

1’ “"n

I (Cl, C2’ LICIE I Cn, ﬂ)o (7)

Thus, instead of a multitude of all functions which are continuous
together with the first derivetive and which satisfy the conditions of
(2) and (3), we select a collection of functions (6) with arbitrary
values of their parameters Cys =r 5 Cos TN The infinite dimensional

Hilbert space functions are substituted with an (n + 1)-uimensional space
function of the type (6).

By utilizing the variational principle (5),we may put down

oL _ OL _ g ... L _g, 9L _ _,2
SZI =0, 5;; =0, s aCn = 0; = A%k. (8)

in addition, generally speaking, there should be carried out the equation
1=0, 9

which obviously follows from th:. stationarity of the functional in
relation to the variation of the normalizing multiplier A.

For the purpose of determining n + 1 unknown Cis Spp ttt s Coy W69

we have n + 2 equations. Obviously it is impossible to generally satisfy
these equations. Here, an essential difference between the variational
methods and the discrete and solid spectra is apparent. 1In tine case of

a discrete spectrum the functionai E contains a minimum for any given sub-
multitude of normalized functions und by substitutica iu che integral of
the E function which depends on the parameters s thace parameters were

identically determined. Formula (5) should be fulfilled in any sub-
multitude of functions which contains the accurate wave function {. How-
ever, the majori.,; of functions determined by formula (6) never contcined

¥ in practice, and therefore the system of equaticns (&) may not be carried
out for any of the functions in this sub-multitude.

In order to clarify the difference of what is obtained in the
discrete and solid spectra, it is necessary to mention that the variationmal
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p*'ptlpl" {(5) is not a staticnarity condition (or minimum as is the case

1 discrete spectrum) of a certain furctiomal. The tranmsition to a
stat:onarlty condition, as we have seen in Section 4, is not identical
and is accompanied unavoidably by certain limitations, which are placed
on the variation of the asymptotic form cf the wave function. As scon as
the travsition is completad, the value cf the parameters S and 7 are

deternined without difficulty; kowever, various means of transition are
appropriate to various approximate methods and give, generally speaking,
varicus values for the parameters ¢, ani 7.

We wi'l examine in detail the mest simple, but extremely important

case when a linear combination of the n-functions is substituted in a4
functional

1
Q‘=Zc.ﬂ . (10)

Let us assume that
¢i (0) =0 (i=1,2, .-+ , n); (11
Ql ~ sin kr, QZ ~ cos kr;

when r -» ® ﬁi -0 ¢j =3,4, +++ , n).

Then the functional (7) will be quadratic in c, /70
)
1@ = Zluu (12)
where w
-1ty L2y g, d +
13- 2L P 2
0 r
o
a2 1
+ o (el -v)g, o). (13)
J 73 dr> i
0
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By such a selection of a wave function the amplitude and phase are

¢.. It is obvious that

determined by the coefficients 1y S,

e = A cos T, c2 = A sin 1,
Azﬁﬂ =¢,0, - ¢c.0c,.
K 1772 z 1

Thus, the variational principle (5) can be as follows:

81 = k (c28c1 - clocz).

We wiil mention that the right hand part of this equation dses not
represent a complete differential, where the non-equivalence of this
equation with respect to the stationarity condition follows.

Equation (8) for the determination of the coefficients c

has, in this case, the following form (Ref. 39):

.2 ke {E ke

Y I, .0, =—=2; Ic =--=;
L7137 2’ 2: 2573 2’
j=1 j=1

n

H (3

2‘ Iijcj =0 (i=3,4, -++ , n.
j=1

(14)

(15)

We have cbtained a system n of homogeneous linear equations for

the determination of n unknowns, Cis Cgs 00 5 €
n

presence of non-zero solutious to this system is

k
3 Lo~ % L
K
Iy*t3 Lo " Ion | =0,
In1 In2 " nn

The condition for the

n

FXTESRTEN

gt avad s,

gl SR
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This condjition, generally speaking, is noct accomplished. 3y dropping /71
one of the equations (16) we construct a solvable system and we arrive at
variovus formulations of the variatiounal method. Acting in this manner we
satisfy the general variaticnal equation (5) in a certain (n - 1) space.

In the Xchn method (Ref. 16) the first of the equations cited hetre
ic dropped, and accordingly the coefficient 4 does not variate and we may
assume that ¢, = 1. Then

c,=tgh, B =0, B =-Kkéc, = - k5 (g T) (18)

<

(Compare with formulas 4.22 and 4.23.)

In the Hulthen method (Ref. 11) the first two equations in the
system (16) are dropped; however, the condition T = 0 is added. This
is obtained if each of the equations (16) is multinlied by ¢, and thcn

combined. The condition I =0 is derived from the stationarity J
regarding the variational rormalization of the multiplier. Such a
variation is possible during the selection of a function of the form (10)
and, acccrdingly, the condition I = O follows from equations 18). The
condition T = 0 is Juadratic in relation to the coefficients < and Cys
and. accocidingly, we obtain two solutions for the relation c2/c1.

In princirle,other variational me.20ds are also possible which
correspond to dropping one of the consec 'tive equations in system (16);
however, only the Hulthen-Kohn methods were in practical use until
recently. Tnerefore, we will concern ourselves in more detail with s
these methods.

Ia the Kohn method we have, for the determination of the coefficients

Cos *t* s cn,the system of equations
I,.+I,.,c,+I,c,+ e+ I c =- k
21 2272 2373 2n n 2
131 + 13202 + 133c3 + o + IBnCn = 0, (19)
Inl + In2c2 + In3c3 + eee + Inncn =0,

By solving this system we find the approximate wave function @. Since the
coefficient ¢y is fixed, we are not able to vary the normalizing coefficient

freely, and consequently the value I(P) will be, generally speaking, /72
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different from zero. This makes it possible to improve the value for
tg N, by making use of formula (18) or (4.23). Thus,we obtain an approx-
imate value for the tg 1 with the Kohn method

tg M = c?+%1 @ . (20)

This foimula can be transformed by utilizing the system (19). Actually

n
T —\— -
L) =) ey (Tge ¥ 10+ ot Loy =
i=1
=c¢, {(I.,.c,+ I . c + ¢co4+ 1,  ¢c) ~c, - k =
1 Y1171 1272 In'n 2 2
=1 .+ I ,.¢c,+ 00+ I c - k Che (21)
11 1272 In'n 2 72
Then formula (20) may have the following form
- e K
tg N = I11 + \;12 + i) <, + Il3c3 + e + Ilncn' (22)

Thus, in order to find a phase with the Kohn method it is necessary
to first solve the system of equations (19) and then to substitute the
coefficients obtained in the right hand part of formula (22). The co-
efficient <, by itself might give a considerably poorer value for tg 1.

In one of the first numerical calcuiations by Huang (Ref. 20) on the

scattering of particles by a force field with a Yukawa potential Ae-ar/r
this circumstance was nut takeun into consideration and its result

differed from those of other calculations by a considerable degree. Afiter
modification of the Huang results according to formula (22), which was

done by Hulthen and Olsson (Ref. 44), complete agreement with the preczding
calculations was obtained.

In the Hulthen method the condition L($} = 0 was carried out before-
hand; consequently, the value of the phase T, which was obtained from the
asymptotic form J,differed in magnitude from the, accurate value of the

phase by (5¢)2, and within the frameworks of this approximation this value
cannot be defined more accurately From this standpoint the Hulthen /73
method is more "consistent'" than the other methods. The results of
numerical calculations indicate that the Hulthen method also normally leads
to better results than the Kohn method.
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In order to establish a relation between the Hulthen and Kohn
methods we wiil return to the system of equations (16), and bv utilizing
the last n - 2 equations, which should be carried out in both methods, we

will eliminate cq, Cho cn. Then we obtain a system of two equations
for ¢, and ¢
1 “2
k
AlLPL + A12c2 =2 %
A .c, + A c, = - k c.. (23)
2171 2272 21

By multiplying the first equation by s the second by Cys and by

combiningz them, we obtain the Hulthen equation

= 2 2 _
I Al eyt 2A12c1c2 + A22c2 = 0. (24)

From this we obtain with the Hulthen method for the desired value

Cc
x:c—2-=tg'ﬂ
1

P S -
* T, «/Alz A118q9) - (25)
With the Kohn method, we obtain analogously

1/ k>
co=-~7— (A +7% ),
2 A22(21 2

- 1. 1 2
X = c2 + X I = c2 + K (A22 9 + 2A12c2 + All)
2 .
(g, 8 ) e ey, - A+ )
TR, N by -3 )t kA, Bijhog "Bt W (26)

It is obvious that the results obtained with the Hulthen and Kohn methods
should be relatively close if only the original functions ﬂi are selected
satisfactorily.

Results obtained with both methods will coincide if only [14
equations (23) are common; that is, if the following equation is true
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k
Ay Ay =3
= 0’
K
A1+ 3 Ay
2
A2 A A =X (27)

12 11922 T %

which obviously equals equation (17).

It can be easily seen that if we use the symbol -, in formula (25),
formulas (25) and (26) will actually coincide when we carry out the
conditions of (27). Thus, during the calcuiation with the Hulthen method
it is not necessary (as was shown, fcr iustance, in Refs. 11, 20, 21) to
compare the results obtained with the results of other approximate
calculations, in order to select the true root from two possible roots.
Only one symbol in formula (25) -- the minus symbol -- has any physical
sense. In addition, the condition (27) provides a sufficiently reliable
criterion for the quality of the selected wave function. Thus, it can be
seeu why, if only the function is selected satisfactorily, the Hulthen
method should nct yield any complex values for the phase tangent.
Actually the sub-radical exprescion in this case is clese to the value

k2/4, and thus it is positive.
In order to understand the formal nature of the secon? soluvtion in

the Hulthen method, we will menticn that if condition (27) is carried out,
then the second radical will equal

1 7 k N
o e | - e —
x' = k‘ A12 R (28)

22
This same result will be obtaincd from formula (26), if w¢ -w..ld formally
change in it k by -k, leaving the wcefficionts Aii withour «: s changes.
Returning to the original formulation of the variatione . u. inciple, we
can see that the second radical from the phase tangent :: obtained (75

from the formal attempts to sacisfy in the arca of the¢ Lunction (10) the
variational equality

- ¢ 8e.) = ATkEN, (29)

8T = - k (025 18¢9)

¢4

which is obtained from the original variational princi~le (15) by changing
the symbol in the right hand part.
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It is obvious, however, tnat the eqgiality (29) makes no sense.
Actually the wave function is already si=wply determined from the
stationarity ~equirements of the funct.ional I regarding the variations
which die ouc at infinity. It follows from this fact that the result,
which was obtained in the case of 3I during the variation of the asymptotic
function, is obtained jdenticaliy and can not be arbitrarily changed.
Consequently, equation (29) does not determine any functious ir genaral.

If we solved the problem bv using the Hulthen method, increasing regularly
the number of variated fuvactions n, thrn the second radical (the symbol +

in the formula 25) would either not comverge at all toward a determined
limit, or this limit would essentially depend on the selection of succession
on the part of the function J,. Numerical calculat-.cns confirm this
assertion. *

We will now investigate the question on the degree to which the
integral identity which, (as shown in Section 10) is also derived from the
variational principle, should be carried out in the case of the ob*ained
approximate function. In the given simplest case this identity has the
following form®

2
" N
tg N = % J ] (}QE-+ k2 - Yj gin kr dr =
0 dr
- % j sin kr - V ¢ dr. 30)
0

We will assume that the function ﬁl = sin kr. Suchk a :zelection of the
function Ql is most simple and practical and is Lhe most frequently used

method. We will suhstitute in formula {30), in nlace of the accurate /76
wave function | its approximate expression (10). Then we obtailua

n X0
— 2
_l 1 i /—(—1----'- 2- o . o
tg N = " 24 ;. ﬂi \drz -k Y) ﬁldx
i=1 0
n
_LY L :
=¢) Ty 3y (31)
i=l

it is assumed here that the accurate wave function ¢ ha+. this
asymptotic form: ¢ ~ sin kr + tg T - cos kr.
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During the derivation of this furmula equalities were utilized as
a result of formulae (11) and (13)

e}

P a3
T AT S RIT (=34, e, W)
dr
0
I L SN k
112 =u| gz l\d—zﬂ' k - V/)Oldr‘!"i . (32)
r

Formula (31) coincides with formula (22) and, thus, during the phase
calculation with the Kohn method, the integral identity is automatically
carried out.

On the other hand, if in the left haad part cf formula (31) we
substitute in place of tz T the coefficient o> then we obtain the first
equation of the system (1€). From this it can be assumed that, if during
a calculation with the Hulthen metnod, the integral identity is carried
out, the system of equations (16) is self consistent and the determinant
(17) equals zero; thus, the Hulthen method, as w21l as the Kohn method,
vields identical results. This proof of the integral identity is equi-
valent to a direct comparisen of the phase calculation result:c by the
Hulthen and Kohn methcds; therefore, it doss not represent any indepen-
dent criteria which would confirm the accuracy of the variational
calculatiou.

The selection oi variating tu:.ctions plays an important role during
the calculation with the variational methods. At the present time in the
majority of variational calculations the wave function for scattering /77
was sought in the fcrm

v = sin kr + u (x) cs kr, (33)

where u(r) is a certain function which contains variating parameters
which, in turn, satisfy the condition u(0) = 0 and are finite when r — «.
It is obvious that lim u(r) = tg T|. The variational principle can be
rT—®
formulated directly for the function u{r), as was done by I. E. Tamm
(Ref. 13). However, such a selection of a wave function should not be
considered entirely satisfactory. V. A. Fok (Ref. 14) has proven that, in
the case of an accurate wave function ¢, the function u(r) will go to

infinity &t the points r = (n + 1/2) % m=0,1, +..).
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It is clear that,when determining such a function with a varia-
tional method,we carmmot anticipate beforehand satisfactory results.*

The selection of a wave function in the formula (33) can be
examined from another standpoint, considsring that a variztional calcu-
lation at additional conditions which were placed on the wave functions
wera conducted.

(n=19 2, "')' (34)

(%’L 2k/

Outside of the radius of action of the forces (r > a) this condition is

carried out rigvrously; however, when r { a this condition has no basis
at all.

Nevertheless, the results of variational calculations, which were
conducted with the functions of the form (33), agree in a number of cases
with the results of calculations which were conducted by other metho-s.
This circumstance is possibly related to the fact that the local con-
ditions (34) which were placed on the function ¢ (the value of ¢ is fixed
at certain values of r) has a comparatively slow cffect on the result /78
of the variational calculation as opposed to the integral conditions (for
instance, the orthogonality toward wave functions of the basic state
during a variational calculation of the excited related szates).

If we use the Schwinger variational principle in the capacity of
a foundation for calculations, then the corresponding direct method can
be easily formulated and the non-identical selection of a method, which
was discussed above, does not occur. Thnis is related to the fact that
the variation of the wave functions and the stationary expression for
a phase might be arbitrary and the asymptotic form of the variated
functions cannot be fixed. 1In connection with this & number of attempts
were made to apply the Schwinger method toward the solution of physical
problems (Refs. 42, 45, 46, 47). However, the results obtained are still
not sufficiently reliable and the presence of a double integration makes
the calculation quite cumbersome.

The direct method of the collision theory can not only be applied
for phase calculations, but also directly for calculationc of the scat-
tering amplitude. There are available, at the present time, several
calculations of such a type (Refs. 4z, 45, 48); however, their accuracy

*The indicated difficulty is treated in Refs. 14 and 19. The
wave function ¥ is determined in these works by two material (or one
complex) functions, for the determination of which the variational
principle was formulated.
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is insufficient and the problem of selection of such test functions

which would enable a sufficiently simple and reliable calcwviation remains
open. We will also mention that the var.ational calculation of the
scattering amplitude by a zero-angle yvields the possibility of obtaining
the value of the complete effect of cross-section. This method is Ais-
cussed in Refs. 42 and 46.

§13. The Variational Principle and the Methed
of a Self-Adjusted Field

The equations of a self-adjusted field for a wave function of a
multi-electron system in a combined state is derived most naturally from
the variational principle, as was shown in the torks by V. A. Fok (kef. 9).
Since fhen, similar equations Ior problems on the scattering of electrons
by an atom have been derived without application of the variational prin-
ciple until the present time. The usual method for obtaining these
equations is contained in the fact that the wave function is presented/79
in the following form '

Y=)yF, ey
L

where wn is the wave function of the atom and Fn are the functions which

characterize the bombarding and scattered electrons. In case of an ex-
change calculation this sum should properly be symmetrized. Furthermore,
from the entire sum there remains only one ter. (or several terms) which
correspond to the method of configuration superposition for a discrete
spectrum. If the expression obtained is substituted ir the equation, it
is multiplied on the left hand side by the wave function of the atom and
integrated over the coordinates of the atomic electronc. In a very
simple case this derivative was given in Section 1, However, such a
method for obtaining an equation for the function F requires addiiicmal
substantiation. It is not at all obvious hteforehand why equation (1.1)
should be multiplied by the wave function of the atom. Generally
speaking, we could have multiplied this equation by any given function
of the coordinates of the bombarding and atomic electrons and, after
integration over the coordinates of atomic electrons, we would have
obtaired various equations for the function F. If the expression (1.7)
for the wave function had been accurate, then all these equations would
have been satisfied. On the other hand, if expression (1.7) is approx-
imate then, generally speaking, it is not clear which of these equations
is the best and {n what sense.
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Therefore, during the derivation of approximate equations for the
wave furctions it is advantageous to do it on th> basis of the variational
principle.* For the sake of simplicity we vill examine here only a case
of electron scattering by hydrogen, disregarding, as usual, that pa-t of
the solution which contains the functions cf the solid spectra. We will
stop at the characteristics which occur during the examination of prob-
lems of scattering of electrons by more complicated atoms.

The wave function of the hydrogen atum will be renorded as /80

>~

RGN =/—_1§ IED T, @) 24, (£) F, (£ | (2)

=

where L satisfy equations (8.2). We will consider the stationarity

condition of the functional

1 N\ - in - — in ,~
- = . 4 %
=3 ”Z By (r) Fio (rp) 285 (rp) Fyo (r) ]*x
i
. — cut —= . — cut ,—
X LZ e () BP0 Gy # 4y (F) Fy (7)) drydry, (3)

where the syutols "out” aund "in" indicate that in the asymptotic form of
the function Fi there might be present cnly plane or divergent waves, or

convergent waves with the operator L as deterwmined by equation (7.1).

In order to obtain the equations for the fumction Fi we might

limit ourselves only to such variations of SFi which do not change the

asymptotic form of the wave function. It was already indicated in

Section 8 that the functicnal I is stationary in relation to these
variations.

We will introduce the following definitiors

*This circumstance was pointed out in the work by V. I. Ochkur
and Yu. V. Petrov (Ref. 49).
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(In formula (5) we have operated on the function ¢i on the right hand /81

side with a part of the operator L.) The functional I may be as follows

=) in* - =, pout =
1 -2; [f Foo(n) Hij (v) Fj (v)dr +
i,]

+ fj Fi“* @ K @ F?“‘ "ydr dT'], 7

From the condition of stationarity of this functional in relation to the

.y . in _out . .
arbitrary variations of the functions Fi R Fi , we directly obtain a

system of equations for these functionms. Thérefore,F}n and F9ut yield
; 1 J
the identical equations

},“1j @ F @ 2 EJf Ky (G, £ F Gar' =o. (8)
i ]
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This system may be recorded as follows

/v +k %)’?fr}+2[v (t'F (1) =
i
+ | K., (£, ) F, (£)dr'] =o0. (5
ij j

If we consider, in the formnlz (1) and henceforth, that the
summarization is conducted in all states inciuding the solld spectrum,
then the system obtained will be accurate. On the other hand, if we
could state the final number of terms in the row tken, as can he seen
from the conclusion, the solution to the system (9) will yield a single
function {, which satisfies the variational principle in the class of the
function (1) with an arbitrary Fi' Ir that sense the function obtained

will be optimum in its class.

We will examine an important specific case when we limit ourselves
. th .
to only one of the i cerms of the sum (1). Then, in the case of the
function Fi’ we obtain the equation

(Vrxf+ 2 DV, @ F @

+ | K, @ TYF () ar =0 (10)
from the solution of which we obtain the wave function 182
v @ Iy =Ly GEyF (r.)) £y, (r.,) F, (%,)] (11)

+ v T Vit By YR (SRLF S TS LA

This function satisfies the variational principle in the class of func-
tions of type (11) with an arbitrary F,. Such an approximate method,

according to the analogy with problems of a discrete spertriis, is called
the Fok methcd or the method of a self-adjusted field with ar exchange,
In the case of large ry and r, in the asymptotic solution of function (9),

only an elastically scattered wave will remain in addition to the incident
wave. Therefore, by considering only the wave function (11), which was
calculated by the Fok method, we caan take into consideration orly the
elastic collisions and disregard all inelastic processes. Howerer, in
spite of such seemingly rough appioximaticn, the Fok method gives gooud
results in many cases. IiL can be assumed that from the condition of the
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unitarity of the scaltering matrix, that part of the elastic collisions
in the complete effective cross section normally represents not less than
one half (Chapter IIT). This consideration might serve as an argument jin
ravor of the Fok method.

If we investigate the problem of scattering of electrons by more
compliczied atoms, then we should mention, first of all, that the atomic
wave functions are known only approximately. This difficulty was con-
sidered in Section 8 and we will not concern ourselves with it at this
point. From results obtained in Section 8 it is obvious that if the wave
function is represented in the form F¢, where F is the functien of bombard-
ing electrons and ¥ is the function of the atomic electrom, then it is
imposcible to calculate the effects of cthe bombarding electron and the
atomic polarization function @ consecutively, since this function should,
in turn, satisfy the variational princirle in a certain class of fuuc-
tions, and consequently it is caliculated indcpendently of the “orm F.

In this manuner the method of a self-adjusted field for problems
of scattering possess a charactevistic distinction from this same method
for related states. The bombarding electron does not affect the motion
of the atomic electrons within the framework of this approximation. This
characteristic facilitates the proper calculations.- since instead of /83
solving the joint n + 1 system of equations, it remains for us only to
solve one equation for the function of thie bombarding electron. The
calculation of a wave function of che atom can be conducted independently
or by way of utilizing the already available results of approximate
calculations by these methods which are based in cune way or another on
the variaticnal principle (for inscance,with the method of a s2lf-
adjusted field). The effect of a bombarding electiron on atomic elec-
trons (that is, the polarization effect) can be calculated either with
the method of configuration superposition, or by introducing a clear
dependence of the wave function on the distance between the bombarding
and atomic elec.rnns.

When we pass on to multi-electron problems the methed uvf symmetri-
zation of the coordinate wave of the function becomes essentially wore
complicated. If S is the complete spin of the atom which is bombarded
by an electron, then the spin of the total system might equal either
S+ 1/2, or S - 1/2. The electrons in an atcm might be div‘ded inte two
groups (%-+ S and % - 8), whereby the wave function of the atom is anti-
symmetric in relation to the shift ¢f coordinates inside of each group.
In addition there should be carried out the Fok condition of cyclic
symmetry (Ref. 50). If the spin of the total system equals S + 1/2,
then the bombarding electron joins a large group of electrons, and
symnetrization is conducted very simply. The second case, when the



bombarding electron joius a smaller group, is more complicated. The
problems of symmetrization of a coordinate wave function were investigated
in detail in the work by G. F. Drukarev (Ref. 51).

We will discuss here only the final results for collisions with
helium, that is,for the case of three electrons. Here the spin of an atom
m;ght equal either zerg, in which case the wave function ¥ is symmetrical:

LA (rl, r ) = mo (rz, r, ), or it might equal a uait, in which case the

. — — X — -
coordlnate function ¥ is antisymmetric: wl (rl, rz) =- 4 (., rl). In

the first case we can construct only one function with S = 1/2:
1/m (?1, 32, ?B) =F (1)) ¥o (?2, ?3) -F (?2) ¥ (?1, ?3). (12
In the second case the spin S might equal 1/2 and 3/2; /84
¥/, = 2F (x)) ¥ (?2, ?3) + F (?2) iy (?1, ?3) +
+F (F) 4 (T, ), (13)

-—

- . ( i ’—\ - b d - -
32 =¥ (P ¥y (p 1) HF (@) by (mg T+
S N ARTNCAESY (14)

By substituting the obtained functions in the functional and by requiring
its stationarity, it is easy to obtain the proper integral differential
equations for the function F. After solving these equations it is
possible to obtain the approximate wave function for the scattering of
the electron by an atom which is in a ground as well as excited state.

The numerical solution to the equation of the self-adjusted field
is possible only after a resolution of the function ¥ by the partial
waves. However, even after that, if we take into consideration the
exchange, it is still sufficiently difficult to solve the proper integral
differential equation.

A numerical calculation of this type was conducted by Morse and
Allis (Ref. 3) for the case of collisions of electrons with hydrogen
(¢ =0, 1); however, in the case of S = 0 the accuracy of this caleula-
tion is obvicusly insufficient (Ref. 75). It is possible, however, to
take a different approach to this problem and calculate the function F
(or the corresponding partial waves) with the help of direct methods,
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that is,based directly on the functional (7) or analogous functiomns for
more complex problems. This type of calculation was recently conducted
for collisions of electrons with hydrogen (Refs. 21, 22), hydrogen type
ions (Ref. 23) and, finaily, collisions with helium (Refs. 24, 25) for the
basic and primarily excited states.

a

314. The Variational Principle and the Classification of /85
Approximate Metlhods for the Calculation
of Inelastic Collisions

We have mentioned alrcady in the preceding section that the wave
functions which were calculated with the method of a self-adjusted field
contain only elastically scattered waves at large distarces from the
scatterer.

However, we are still able to calculate the amplitude of inelastic
scattering with the help of these approximate functions, if we assume
that these ¥unctions do not differ strongly from the accurate wave func-
tions; that is, that the inelastic scattering is sufficiently slow in
comparison with the elastic scatterings. In that case we may substitute
the approximate function of a self-adjusted field in the expression for
the ampiitude of inelastic scattering, which is stationary in regard to
slow variatious of accurate wave functions (derived in Section &) . For
scatteriag on a hydrogen atom this stationary expression has the form

1
- R B 6 ) }
= St {f. (vl, vz\ + JI fz LYl dTl dTZ @))

After substituting in thir expression for the wave functions

~{( 1) - - -
i =7}-E PN @) v, G F G b G

(2)
y(3) =v;; k¥ (rl) vy (?2) + Fén (;2) wj (?1)]* ’

<

we can use formula (13. 7) taking from it the term with a single value of

i and j. The quantity £ is, in this case, equal to zero, and we obtain
ij

the approximation
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k, [a] »
3 -7 ) =l in* - =y out =
i in¥% — — - . - )
s F @ kg G R G ara (3
. 1] 1 A
The acquired result coincides with the one obtained for the / 86

inelastic scattering by the method of excitation. (See Mott and Massey,
Ref. 1, p. 180.) That method is usually derived by 7nalyzing a system
(13.9). 1If we keep in the expression for the wave function only twc
terms, the i term and the j term, we obtain a system of two equatiors
for the functions Fi and Fi:

2 asd ] =l '
7 + kD) F 4 UF, j K, (& £ F, () dr

- - 7 C : i il 1
= Liij ¥ j kij (x, ") Fj (r') art',

2 2 - -
v© + k. F.+U,,F,+ | K,, (r, ") F, (") 41’
( J) i i’ ur ji G5 ) j "

— r -— =, -, ',

=- U FF J Kis (r, r'") F, (r') dr'; (%)

U =V..+‘2“.‘)
r

ij ij ij’

This system of equations can be solved by the method of successive
approaches. For that we equate the right sides of first and second
equations to zero and find the solutions for the two equations for the

(0)
i

zero approximation F£O) and F , which corresponds to the method of

self-adjusted field, fiscussed in the preaceding paragraph. Then we
substitute the obtained solution in the right sides of Loth equations

(

and, solving them, obtain functions Fil) and F§1) in the first approx-

imation. In article (53) it was shown that the amplitude of scattering
(1)
in function Fj ? is determined by formula (3); that is, for the deter-

(L)

mination of the asymptotic form of function F. it is sufficient to

]
know only F§0) and F§O).

It is obvious that formula (1) could also be utilized for refining
the expression for the amplitude of elastic scattering fii’ if the

corresponding equation (13.10) is being solved by approximation so that

[ Y(i) LY(i) dv, dr, is not equal to zero.

the functional Ji ¥ 1 1 2
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The formulae presented here could be readily rewritten for 187
spearate partial waves.

Thus, from the standpoint of the variational principle, we aru.
reaching a distinct classification of the apgroximate calculation method
for elastic and inelastic collisions, depending on the various functions
being substituted in the right side of the linear functiorn (1).

In his review of calculations of collisions of slow electrors with
atoms, Massey (Ref. 52) gives a classification of approximate calculation
methods for inelastic collisions, based on dropping some terms of system
(4), taking full account of the others, and accounting only ir first
approximation for the benefit of some which are considered small. Table 1
is given in that review. (We have somewhat moditied thkc designations of
the methods.}

TABLE 1
Dropped Considered Not Considerzd Designaticn of Methoc
PP Small Small &
Y1202
FyjKype
K22 UlZ T Born's
Y112U22
Lll’KZZ U12,K12 --- Born-Oppenheimer
K11oK9
K22 U12 | L\“,U22 Excitation waves
. ' A .
Kll’KZZ U12,K12 Ull,J22 Exc1tat109 waYes with
symmetrization
—— i i s with
U12,K12 U11’U22 Exc1tat10? WaYeb with
K.. K symmetrization and
112722 ex :hange
K11’K12’ --- Ull’Ulz’UZZ Strong bond
K
22
--- .- All Strong bond with exchange
1 and symmetrization




Examining the same methods from the variational standp~int, we /88

obtairn Table 2.

TABLE 2

Forms of Wave Functions to be Inserted in the

Method Functional
iR’-E’l
Born's e b (?2)
ik .?1 iK.T
Born-Oppenheimer e ¥ (?2) e N w(?l)

Excitation waves

Excitation wavzs
with symmetri-~
zation

Excitation waves
with symmetri-
«ation and
exchange

Strong bond

Strong bond with
svmmetrization

F (?1) -1: (?2>

F (X)) ¢ (F,)) £ F (F) ¢ (F)
FFE) & F) +F (F) ¢ (@)
Py (ED by G+ Fy (E) b, @)

P b G+ E Doy, @)k

£ B (F) 4 @)+, @Y v, @)

89

Here | equals the respective atomic wave functions, while functions
F, in turn, are determined from the conditions waking the functional
stationary in the respective classes of the funztions. The classss are

AT AR

Poceor e

determined from Table 3.
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TARBLE 3
Function Class of Functions in Which the Functional
is Sta:ionary
F ® (rl) ¢ (rz)
= z — & — & o \ ‘:' =3
F $ (rl) i (r2) =@ (12, v (rl)
p T e .,1, b F 3 — ., -
- -
= - = - — 4 - 5 - . - £ B . " —)
F.”, F, 2, () ¥y (r2) + 2, (r)) “a (rg) =2y (.2) ' (rl) +

= Q2 (rz) .‘!JZ (r1_l

Here, ¢ (1) equals arbitrary functions of the character necessary
for asymptotic behavior (i.e., having at largec r the form of a plane /89
wave of given direction and crnvergent or divergent spherical wave with
arbitrary amplitude, depending on the problem being solved and on where
the given function is being inserted).

Thus, the variational principle, while not leading in this case
to new equations cr »ew methods, enables us co substantiate more
emphatically the cld methods aad tc examine them from a now viewpoint.

Computations (by the method of excitation waves with cousideration
cf exchauge and symmetrization) of excitation by electronic impingement
of a2toms of hydrogen (Ref. 22), helium (Ref. 25) a.d of an ion He™ (Ref.

23) are prescuntly available.

These computations coatained the solutions

of equations of the self-adjusted ficld obtained with the help of direct
variational metnrds meationed at the end of the p:receding paragraph.

These computations mede it possible to explain the resonant
chazacter of hehavior of the effective section near the threshcld and
to obtain results in satisfactory agre=ement with experiments where
exper imental data is available (excitation of helium).
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§15. Variat.onal Computations of Elastic Collisions
of Electrons with Hydrogzn

A detailed survey of variational computations of collisions be-
tzzeen slow electrons and atoms, ac well as a comparison with other
computations, is to be found in a reviewing article by Massey (Ref. 52),
now being transleted into Russian, and in a review by G. F. Druvkarcv
(Ref. 54).

We will concentrate h.re on the computation of elastic collisions
of electrouns with hydrogen atoms carried out by Masse, and Moiseiwitsch
(Ref. 21), i.e., on the simplest problem utilized throughout the bock for
demonstrating the application of variationmal methods to the problem of
multi-body collisions. This problem is now the ~nly one for which it was
possible to perform a variational computation with consideration of
polarization; i.e., it was possible manifescly to intrcduce in the wave

f'nction the distance betwcen elecctrons T12 and to step bevond the borders

of the self-adjustment method. The equation of self-adjusted field /90
for s- and p-scatterings was numericallv integrated in the paper of
Macdougall (Ref. 55) without considerction of exchange, and in the npaper
of Morse and Allis with consideration of exchange. In the latter case,
for the solving of the equations, use was made of the Bus:h differential
analyzer -- a mechanical calculator of the coniinuocus action type. Only
the s-scattering was analyzed in the work of Massey and Moiseiwitsch; the
variable functions were selected in the forms:

-r, ~sin kr -r -¥, COS KT
s L iR 20 o . Ty SN
_.l_ \ Y
Yz —\/—Z. ”1 (1‘1, r2) * Yl (rza rl)]’ (2)
-r. .sin kr
¢ alo T2,
3/ kr2
-y - k
+ [a+ (b+cr,,) e rz] (1-e rz) =22 } (3)
12 kr, ’
= L
¥, =75 [‘Y3 (rys r,) £ ¥, (r,, rl)]. (4)

Here a, b, ¢ are variable parameters, a = tg T determining the
phase of wave functions.
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The results of the various computations are presented in Fig. 1.

Obviously the variational computations with function Yl should be com-

pared with the numerical solution of the Hartres equation, while the
variational computation with the function YZ should be compared with

the numerical solution of the Fok egquationms.

The variational computations with function ¥, should, generally
speaking, furnish the most reliable results; however, owing to the
absence of experimental data, 2 comparison can be made only with results
of less precise computatiomns.

On the chart (Fig. 1) it is apparent that, within the scale of
the drawing, the computations with function Y coincide with those ob-
tained by the Hartree method, which reliably confirms the accuracy of
either computation. In the scale of the drawing, the computations with

the functions Yz, Y4 and by the Fok method for phase 7| also coincide.

For phase 7| agreement between the various computations is considerably
poorer (curves IV thrcugh VIII), even omitting the Morse and Allis
ccmputation by Fok's method (curve VIiII) whose inaccuracy for 7 at small
enargies is not established. The disagreement between results of /92
computations with the same functiou by Hulthen and Kohn (curves IV, V

and VI, VII) also indicates the unreliability of the results and the fact
that the choice of functions Yz, Yé for this case was unfortunate.

The circumstance of obtaining, at the same approximation, much
- + . .
better results for M than for 7| is upnderrtandable. Indeed, the function

¥~ becomes zero at r12 = 0 and its behavior at small r12 is, consequently,

of little significance in a variational computation. However, particu-
larly in that region, the behavior of the wave function becomes especially
complex. At large r12 the effect of polarization should be weak; the

wave function at the good approximation breaks up into products of single
electron functions; consequently, for function ¥ , Fok's metbod should
give good results.

The computatioral results with function Y, present less interest;
as for Schroedinger's equation, there does not ekxist a solution which
would have the asymptotic form

sin (kr2 + M

1‘,’ (r) H r —.m,
Vo 0 1 kr2 2 (

0, r, - ™

L

)
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Fig. 1. Various Phase Computations for the Elastic s-Scattering
of Electrons by Hydrogen Atoms

The wave number k is plotted in logarithmic scale to enable more
detailed presentation of phase's behavior at small k's.
I - Computation of phase T by Hartree method; variational compu-

tation with function Yl by the methods of Hulthen and Kohn; IJ - Tcmpu-

tation of phase T by Fok's method; variational computation with functions
Yz, Y& by the methods of Hulthen and Kohn; III - Variational computation

of phase 7 with function ¥, by methods of Hulthen and Kohn; IV - Varia-

3

4
tional computation of phase 7' with function Y, by Huithen's method; V -

2
Variational computation of phase ﬂ+ by Kohn's method; VI - Variatiomnal

computation of phase ﬂ+ with function ¥, by Hulthen's method; VII - Vari-

4

ational computation of phase ﬁ+ with function Y4 by Kohn's method; VIII -

Computation of phase ﬂ+ by Fok's method.

At k - 0 curve I tends to zero, while curves II through VIII tend
to the value T = nx.
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If we were to perform a variational computation in higher approximations,
adding to ¥3 arbitrary linear combinatiors of fdnctions ﬂl, cee ﬁn,

which diminish at Jarge r, as well as at large r,, we should expect that

1
the thus obtained approximate wave functions would lead at n - ® to some

. . . . + - . . .
linear combination of ¥ and ¥ . Such a linear combination could not

. + T . .
have the asymptotic form (5), as long as W # 1T . It is possible, however,
to require that condition (5) bec satisfied at large r_. while the co-

efficient at the respective term for large r be miniial. It could be
easily seen that this requirement is fulfilled for the linear combination
- - a1
j%; (cos ﬁt_i;ﬂ_ ) ) (Y+ - ¥7) and that the phase M will be approaching/93
the limit
ar-m.

From Fig. 1 it can be seen that for Y3 this condition is fulfilled,

approximately only, at k > 0.8.

It is also interesting to investigate the results obtzined with
various approximations at k = 0. Taking account of polarization (Y3, YQ)
or of exchange (Yz, Y4) has the result that the value of phase ﬂ+ at
% = 0 becomes equal to nx (Fig. 1), while fthe computation by Hartree method
and the variational computation with function Yl gives ﬂ+ (0) =9.

This result can be compared with the theorem proved by Levinson

(tef. 56) for the scattering of a nucleus by a central field. By that
theorem the difference

1
> MO - )]

is equal to the number of fixed s-states of the nucleus in that field (if
we omit the particular case when the discrete negative energy level be-
comes zero at the limit and coincides with the boundary of the continuous
spectrum) .

Levinson's theorem is fully applicable to the computation of
elastic scattering of an electron by hydrogen by Hartree's method. That
method, as is kncwn, does not give the fixed condition for the negative

ion of hydrogen H and, correspondingly, T (0) in Hartree's methed be-
comes zero.
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Allowing for polarization [for insztance, the variational compu-~
-a(r-+r2)
tation with the function e (1 + Brlz)] leads to the appearance

of the fixed state for H . From Fig. 1 it is seen that the variational
computation for s-scattering with consideration of polarization (Y3)

accordingly leads to M(0) = n. It is easily demenstrated that taking
exchange into acccunt also enables us to obtain the fixed state of H-.
For instance, the variational computation with function

-ar, -pr ~ar,-Br
h=e 1 2 + e 2 1, ©)
gives the energy of the fixed state - 0.013. It is obvious that [ 94

this value will only improve if we solved Fok's equation derived from
the minimum requirement for the functional

e
f
!

17
E=-73,.

h

VLY dT, d'rz,

on condition of normalization of &. The results of Morse and Allis
computations are equivalent to the variational computation of s-scattering
with function

1 ) 1
¥ == (F (r))e +F (re ), {8)

analogous to function (7). Correspondingly. in this approximation

ﬂ+ (03 = n. The same result is obtained at a variational computation
with function Yz in which symmetry is included in the simplest way and
which is analogous to function (6) for the discrete spectrum.

Thus, the comparison of variational computations for the discrcie
and continuous spectra of a system of two electrons in the field of a
proton shows that, if consideration of a certain zffect leads to the
appearance of fixed state for the discrete spectrum, then consideration
of the same effect in a scattering problem will lead to the increase of
the value T(0) by =x.

This statement is not rigorous, as the theorem of Levinson is
derived only for scattering by a force-center. Its extension to the
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multi-body problem would be a matter cf great intsrest. de will note
that such an extension does not appear trivial, as for 7|” the theorem in
its former form is not fulfilied. Indeed, all approximacions yield for

N (0) the value n; at the same time it may be stated with certainty, that
the fixed state of H™ with antisymmetrical wave function does not exist.
This can be explained qualitatively b the fact that in Levinson's theorem
account must be taken, not only of permitted states, but also those for-
bidden by the Pauli principle. The same assumption has already found
expression in Swan's japer (Ref. 57).

A comparison of the Hulthen and Kohn method uL.as proved that 195
the Hulthen method yiclds a somewhat better result for a phase; however,
as shown in Section 12, a noticeable diversion between both methods points
toward the disagreement of the original system of equations; therefore, the
results cease to be reliable. A check of the Hulthen method calculations
has beep conducted with the help of an integral identity for the functions
Yl’ YZ. It i> pointed out in Section 12 that in the selected function ﬂl
the integral identity is equivalent to the first equation of the system
(12.16), and that solving of this equation indicates only the coincidence
of the results of the Hulthen and Kohn methods.

We will also mention that the assertion by Massey and Moiseiwitsch
(Ref. 21, p. 488) is not true that there is no integral identity for the
general wave function with consideration of polarization. From the re-
sults of Section 12 it can be seen that the integral identity is obtained
automatically from the variational principle by means of substituting in
the functional the functions of null approximation instead of the function
Yl (the Born-Oppenheimer method); and instead of the function YZ’ sub-

stitute the accurate function. In that case,we will obtain for the s-
scittering

sin kr
t_ k * 2 -
tg 7 ‘szY Lig (ry) ke, 19727
dt.dT
1" 2
f e (rl, Tys r12) (- z/ UO (rl) sin kr ) -;;—- . 9

1 - . r:t . .
Herc YU =‘7? e ~, and the function ¥ 1is an accurate solution to

the equation L‘i’t = 0 and has the same asymptotic form as the function in
equations (2) and (4). If the energy of the electrons is sufficient to
excite an atom, then spheirical waves, which correspond to the 1ne1ast1c
scattering, will aiso appear in the asvmptotic form of the function Y+

and therefore, the .‘unction ¥* is not essential. In that case it is ng
easy to obtain an identity [which is analogous to (9)] directly for the
scattering amplitude of the spherical wave.
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Variational calculations for collisions of electrons with hydrogen
atoms were also conducted with the Schwinger method (Refs. 42, 45, 46);
however, the results differ from those of Massey and Moiseiwitsch results,
and obviously are less reliable.
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CHAPTER III

THE SYMMETRY OF FUNCTIONALS, THE PRINCIPLE OF SEPARATE EQUILIBRIUM,
THE UNITARITY OF THE SCATTERING OPERATOR

516. Symmetry of Functionals in the Hulthen
and Kohn Methods

The operators being consideraed in quantum mechanics are, as a rule,
self conjugated. This means that in the case of a self conjugated
operator, the following equation should be evaluated

Papmey ar = [ u, @i+ ar, (1)

~J

for any given two functions ¢, and %, which satisfy the specificd con-
ditions. It is obvious that %his de%ermination makes sense if there are
given the apparent form of the operator as well as the multitude of
functions in relation to which this operator is self conjugated. The
operator H - E, which is being considered in the variational principles
by Hulthen and Kohn, is self conjugated for functions which are twice
differentiated and integrated to a square. However, for these functions
wiich we have substituted in the functional I (see, for instance, 6.17)
and which cannot be integrated to a square, the equality

I (9, ) =1 (@), 5, (2)

can, generally speaking, not be evaluated. For instance, we have seen/98
during the deriviation of the variational principle by Kohn that the
variance

_ 2.0 oy o2
)-1(5\1/2,\1!1)_](4/1\76? R

9 9 1) dr (3)

I (Yl, 6Y2

does not convert into 0 since, after utilizing the Green formula, the
surface integral has the final value within its boundaries.

As a result of an asymmetry the variation of the functional in the
Kohn principle depends only on the variation of the function Yl’ that is
on 6Y1, and it does not depend on 6?2. This result can also be obtained

in the Hulthea principle, if we apply,in the capacity of an original
functional, a bilineal functional



99

(3]

2
G SR
1@y, #) = o, (Li?-v)g, ar, 0]
dr
0
where
g.(0) =0, 2, ~A sin (kr +71) (i=1,2). (5)

In the case when the functions Zl =4 and ﬁz = WZ s sfy the Schroedinger

equation, the functional converts into O and, obviouv .y, it dces not
depend on the variation of the function Z.. The var.ation of ﬁl yields
the previous formula after integracion by parts

where Eﬂl are the phase variations of the function w]'

Thus, the functions Y. and Y, are included unequally in the varia-
tional principles by Hulthen and Kohn.

If we should substitute, in place of the functions ﬂl and ﬁz, a

linear combination of certain n of a given functien v, (r)

2 =§ c;v; (@5 9, =§ civi(0);

Vi(o) =0, i=1,2, -+, m
vj(r) ~Owhenr ~®. j =3, 4, +++ , ny
Vl(r) ~ sin kr, Vz(r) ~ COS kr’ (7)

then the functional I (Qz, Ql) will be put down in a bilinear form /99

n i 2
DS e (2 )
z 2 Iijcicj, I Ivi (~~dr2 + k° -V v dr. (8)
i,j= 0
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As a result of the operators non-self conjugation the condition

I..=1., (9

is generally speaking not fulfilled. 1In the given case oniy

I, - I, =k, (10)

and the remaining coefficients Iij dare symmetric,

The formula (6) may be put down in form analogous to (12.15),

= P |
8I = k (CZBVI clﬁcz). (11)

It is easily conceivable that the system of equations derived in this
case for the coefficients s c!, are identical and coincide with the
4

system of equations (12.16). Thus, in the final calculation the symmetry
in this case is preserved. This result can be easily obtained also during
a more general method of selection cf functions.

It is obvious generally that the requirement of self conjugation
on the part of the operator H - E or the requirement (2) on the part of
the symmetry of the functional 1 (&,, Z.) should place determined limi-
tations on the functions @, and @ ,“which are substituted in the func-
tional. As we will observe later, these limitations 2re closely related
to the principle of separate equilibrium in quantum mechanics and zlso
to the unitarity of the scattering operator.

§17. Passage of a Particle Through a Potential Barrier
and the Symmetry of the Variational Functional

We will consider a simple one dimensional problem on the parsage
of a particle through a potential barvier. The Schroedinger equation
has the following form in this case:

2
(—‘-‘—+ K2 -y (x)> § (x) =0. (1)
2
dx
We will assume that V (x) is limited and that it decreases /100

rapidly {faster than l/xz) when le - ©, The region located to the left
of the potential barrier will be defined by index 1, aad the regiomn to
the right will he defined by index 2.
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W2 will consider thie flux of particles which fall to the left
(from region 1) on the potential barrier. The wave function in this case

will have the following asymptotic form

ikx -ikx
bl I ~ e + a;q8 ; ml

X— = ®© x~t+00

ikx
| ~a;.e . (2)

It is obvious that the function $1* will aiso be the solution to

the equation. 7Tt is also possible to consider the flux of particles which
fall on the potential barrier to the right (from region 2). We will
define the wave fynction of this problem as

9"
The asymptotic form of the wave functions *1’ WZ’ wl*, ¢2* is
iliustrated in Table 4.
TABLE &
Region 1, x » - « Region 2, x = «
ikx -ikx ikx
wl e + &y © a12 e
W* e-ikx + a* eikx a* e-ikx
2 11 12
" a ~ikx -ikx + ikx
21 22
H
h* a* ikx ikx + a* -ikx
21 22

The square of the modulus of coefficients of transition aij

determines the transition probability of particles from the region i to
the region j.

The variational principle for this problem might be obtained from
the consideration of the functicnal
+ ® "
, B a* .2
1y, 4 = o, <dr2 w2 V) g ax, (3)
» .
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where ﬁl, ﬁz have the following asymptotic form /101
ikx ~-ikx
ﬁi ~age + b.e (4)

with ce.tain arbitrary coefficients a, b, which differ for wvarious
functions and regions.

By placing specified limitations on the asymptotic behavior of the
functionrs Ql and ﬁz, we can obtain a stationary expressicn for the tran-

sition coefficients aik'

We will explain which effect can be obtained from the requirement

of symretry of the functional in regard to the dicplacement of the
functional ﬂl: ﬁz

18,,8,) =10, 7), )

12 is obvious that this roquirement is fulfilled for the sake of zccurate
solutions to the Schroedinger equation, since in that casc both parts of
the equation ccnvert into 0. We have

1@, 8) -1, 7) =
+ o + @

= | e o aa) =gy - sy | =0 (6)

If we should substitute now in place of the function QI, ﬁz the
* *
furctions *1’ wl s &2, *2 , then we obtain & number of correlations

between the coefficients aij'

0f course, these correlations might be obtained also in a simpier

: * *
way, - ince frcm the fou- solutions to ¢1’ W1 , *2’ and ¥ only two

2

represent linear independencies. Therefore, the functions ¢, and v,

2
might be obtained as linear combtirations of the function wl and wl* and,

respectively, the coefficients a

and a,, might be expressed by a)q and
%12 .

21

However, the method applied here leads to the same result and
«llows us to derive a generalizatiou for more complicated problems in
the theory of collisions.
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Ecuation (A) also follcws directly from the fact that the Vrcnsky
denominator does not dovend on x for twe sclutions te eduation (1).

By comb.ning four equatiors in pairs we obtair six possible [102
condi~ions of symmetry:

; =1 (% ) 2 D =Tk,
1) I (\'13 wl*) ( 1 J 11!1; b ) ‘-) I (‘!ZJ 12) I (L’z > bz))
. - - * - * 3
3) I (b, Uy = (hy, 1), &y 3. \wl*, 1,70 = T (v, Ul*), '¢))
. - .o hY 1 * ! - .y *
5) 1 (‘1[11 '1'2*) =1 (wz ? ‘\bi) ’ 6/ 1 ('\'1 ’ 52) = I (2’ 'd'l )~

It is obvio-ws that tiie third and fourth as well as the fiftir and sixth
coiuditions ¢. symmetry are equivalent.

By substituting in formula (6) the asymptotic form of the function,
we obtaia frum the first and second coundit‘ons the equation

18y
2 .
o 124 Hay 12 - 1. ®

from the third and fourth ccnditions, we have

= (
319 = @1 (9)
Finally, rrom the fifth and sixth concitions we obtain
* *
allazlhk a.8,, = 0. (10

The equations (3) express .tae law of current staniiicy for states
whicl are characterized by the wave fun:tions ¢1 and ¢2. From =quation

(9) it follows that the probabilities are identical that the particles
will pass through a potential barrier from left t» right and from right
to left; that is, there follows the eversibility principle o~ tke
principle of separate equilibrium for the given probiem. It tollows,
from this equation, that the phases of complex transition coefficients
a7 and a  are equal in regard to each other. Equation (.0) unes not

make sach physical sense. This equation combines the phases of tie co-
efficients 8110 4190 and 859°

5
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Equations (8), (9), and (!0) express the conditien of /1C3
symmetry and the unitarity of the matrix

a a
2
s = / 11 12 (1)
a a
\Var o %2z

We will ccnsider somewhat more in detail the sense of this matrix.

Let us assume that, at the starting moment, we had in region 1 a
wave pocket, which was removed at some cdistance froan the potential
barrier, and which is traveling toward this barrier. Then, after a
scattering, we obtain two wave pockets with determinec¢ phases and ampli-
tudes which travel to the right and to the left from the potential barrier.
Such a condition is obtezined during the mction of the wave pocket to the
right of vegicn 2. We assume, thereby, that the wave pocket is so wide
that it canr be considerec as being "monochromatic", and we mar therefore
disregard any events whicia are related to spreading.

Tt is possible to construct a scattering operator (Ref. 27), which
transforms the wave functiou before scattering into a wave function after
ccattering. The wave function of a particle before and after scattering
might be charactesrized in the given case by complex wave amplitudes,

. . iky -ikx
which travel to th2 right anc to the left: ¢ ~ c,e ke + c,e ik .
Tn such a sense the above considered matrix will actually be the
vcatteritg operator. The scattering operator determines fully 'the
cattering' properties of the potential barriesr.

Thus, ¢ can see that the problem on the symmetry of the functional
1 (ﬁz, ﬁl), in vrelation to the displacement of the functions ., ﬁz in the

givan case, is cl-sely related to the principle of reversibility or the
seperate equilibriwa and also to the unitarity of the scattering operator.
We will explain furtier that all these considerations might be broadened
to include more general problems in the collision theory.

{18. On One Identity for the Scattering Ampiitude of Particles /104
by a Ceutral Field

The solution to the problem on scattering of a flux of particles
by a central field V(r) leads to the following expressicn for the
scattering amplitude:
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z 247
— — 1 N R g — —
f (v -n)= 25 Z. (Zi + 1) (e L. 1) Py (v - n) =

X

1 N — —

= 3 ¢ 3] o \

2. 2 (24 + 1) bsz (v - n (1)

2=0

It is obvious from this formula that the scattering amplitude
should not be selected in an arbitrary manner, i.e., not for all func-
tions (v - n) is it possible to find such 2 pote. ial V(r), for which
f would have been the scattering awplitude.

The amplitudes of the convergent and divergent waves should equal »
each other for every terwm in the resolutions (4.3) of the wave function

Y. It foliows from this :requirement that the phases hg should be
material, and thus the coefficients of the resolution b, of the function

f are not arbitrary. These cvefficients should satisfy the correlation

2im
b +1=2 2, b +1) (b°41) =1,bb +b +b =0. (2)
¢ 2 ) > P T T %y

We will multiply th= last ot these equations by (24 + 1) PE (5 . 3') and

we will summarize th’'s by all . Then

* - o
-+ P, (v - v'
bLb.e (2¢ + 1) p (v - v') +

PN

0
[e ]
N *, - -
N ] NP . ' = ,
+) b, 1) (DR, T =0 (3)
£2=0
[os]
Y bbb i+ P (@ -T)+
L. 48 ’ 2
Z:O
+ 2 [£ G -D) - £¢ -] =o0. r4)

Later we will form the integral

[ O EG D) do, (5)
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where the integration is ccnducted in all directions of the unit /105
vector n. By utilizing (1), we obtain

* -, P —
If (w' *n) £ (v - n) do =

(u+1)b b£|P (v-n)P (' - D) dw. (6)
0

bl»—'
ni~8

y/
The integral can be easily calculatced if we utilize the theorem of
addition (9.4). We obtain

r % o -, — - ¥
{f (u'-n)f(v-n)dwal%

L

% - -
921 1 I o ! .
(22 + 1) bl blPﬂ ( v') n
o

[\,/I 8

By substituting this equation in the formula (4), we finally have

Zl?u[‘f*(;' .m) £ (& - 1) dw=-_21§[f G- - @ D -

=Im [f(v - v")]. (8)
This identity should be carried out at any given orientation of the
unit vectors v, v'. In a specific case when v = v', we obtain
mEG .0 =4 [8F. D% aw=—2, (9)
bn J 4k?

where o is the full effective cross-section.

Thus, the imaginary part of the amplitude of scattering at a 0 angle
is proportional to the full effective cross-section. For a differentially
effective cross-section, we might herefrom obtain the inequality

22

lim o (9) = & %, (10)
-0 16x

- -3
where 9 is the angle between the vectors v, v'; that is, the inclinaticn
angle.

As we will see further, formulae (8). (9), and (10) might be /106
generalized also to more complicated problems in the theory of collisions.
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Equation (8 for the given problem is analogous to the equations (8) and
(10) of the preceding section and is also related to the unitarity of
the scattering operator.

We will now clarify whether formula (8) for scattering amplitude f
(calculated by Born's method) will be carried out. In that case f(v . )
is clearly expressed ihrough the potential V{r) (10.28)

w
£(@ *n =-k j vV (1) §1§;ﬂ£ r? dr;
0
.8 - = - .
q = 2k sin 5 sy v n =cos G. (11)

We can see that the scattering ampiitude in this approximation is
substantial, and thus the right part of the formu:la (8) converts into O.
In the meantime,the left part of the formula (8) is known to be different
from 0, for instance when £ = O,

However, it 1s essential in Born's method that the scattering
amplitude be low: £(8) < 1. From this, it follows that the left part of
formula (8) is of the second order of smallness; then, during its calcu-
lation with the Born method, the terms of the second order of smallness
in its right part are dropped as in the case of amplitude f. Thus, at
large values of k, the imaginary part of the scattering amplitude f is
much less substantial and a check of formula (8) can be conducted oniy
through the utilization of the formula of the second approximation in the
Born method.

We will meuwtion that the principle of separate equilibrium, which
was expressed in the preceding section by formula (9), is carried out
here in a trivial manner, since from the spherical symmetry of the probiem
it follogedﬂdirectly that £ (3, v') depends only on the angle betwzen the
vectors v, v', and consequently

£ (1_;3 -J') = £ (' ;” - .J): (12)

that is, the probability of scattering of particles from the direction/107
v toward the direction v' and from the direction -v' in the 4! 2ction
of -v is reciprocally equal.
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§19. General Problem on Scat:tering by a Potential Field
and the Symmetry nf a Functional

In the case of scattering of particles by a fleld which does not
have a spherical symmetry, the scatiering amplitude f(v, n) depends on
the orientation of both unit vectors v, n and not only on the angle between
them.

We wili consider the functional
18, 8) =| 7 (V+¥E -V g ar )
22 71 J 2 ’ 1 ’

which is the original functional for the deriviation of the Kokn variational
principle. This functional has a determined value for the fun:tions ﬂ
ﬂ?, which have in turn a common asymptotic form

ikv.ur ikr

i e
Qi ~ e + Fi (n) el (2)

The Yl and YZ functional converts into 0 for accur:zte solutions to the

Schroedinger equation.

As was already metnioned, the functiomal (: 1is, genera'ly speaking,
non-symmetric in regard to the displacement of the funccioi. Lo ﬁo.
Analogously to the way that this was done in Section 2, ve acquire the
symmetry of the function

I8, 7)) =1 (8, #), 3

and we will clarify which conditions should be placed on the function so
that these requirements would be fulfilled.

Equation (3) may be put down in the following form

2 2 _
| @,v%, - 8,9%) ar = o, (@)
or, by utilizing the Green formula /108
lim | (;z g, g 2 g, )ds =0 (5)
R oo 1 or 2 or ) ;
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In this case the integration is conducted by the sphere of the
radius R. We may thereby utilize the asymptotic form (2) of the functions
Ql and ﬁz.

We will lay out these asymp ~tic expressions into a row by spﬁeri-
cal functions

o o]
NoT [ e
2 “'2. L2+ D 5 Tpagyp (00 By 0y - m) 4
£=0
ikr
(1) =y e 7
+ YZ (n) i (6)
Here, Yél) are certain spherical functions of the order 4, which are

obtained during the solution into a row of functioms Fl’ FZ’*

Fo=) D @y, 7

1

Y
0

>~

T [~ 8

If we should substitute solution (6) in formula (5), then in
result of the orthogonality of the spherical functions we will have a
simple sum instead of a dual sum under the integral.

We will consider the g term of this sum; thereby, instead of the
Bessel function I£+1/2 , we will substitute its asymptotic form. We
have

_— s . . . ikr
20 + 1 [e1k1 . (_)ze 1kr] PG .+ Y(L) @ g_"_l x
£ £ kr

¢ 2ikr 1
T N L TR O R eikr} _
*U2e 'f - 2 2 e kr .

: ikr
Cf2p+ 1 ikr g -ikr = (2) - e’ N
{ 2ikr L€ ()7e "l R, Gy s W YT () By x

* .
It is obvious that YZ are not standardized and are generally

speaking linear combinations of auto-normalized spherical functions Yzm
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/109
x f29 + 1 ‘eikr . (;)ze-ikr, P (g . E) + ikY(l) @ eikrl
larrmi RVEAS g W T r T
.20+ 1 2 = oy o(2) =y
i SRR R RN
-®, (5, D) YEU @™ 1. (8)

It is possible in integration to utilize once again the addition
theorem

—, — - 43‘[ —,
j Y, @2, G Wy (), (9)

In such a form the theorem is applicable for any given spherical function
on the order of 4. After integration, we obtain

) ORD Gy =) 8P ), (10)
£=0 £=0
N C R S ¢S B
IR SR CEA IR SN GNP (an
£=0 4=0

since the constancy of the function Yz = (-)z.
Thus,

-

Fpo (v =F, (-v)). (12)
Now if we substitute, in place of the functions Zl, ﬁz, the
1 YZ with the scatter-
ing amplitudes f(;l, ﬁ), f(32, 3), we will obtain a formulation of the

accurate solutions to the Schroedinger equation VY

separate equilibrium principle for the given problem

f (vl’ - Uz) = f (Uza = vl)' (13)
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We will consider the requirement

%,

which obviously should also be fulfilled in the case of the accurate

wave functions Vl’ Wz. By acting precisely in the same manner, we /110

come to an analogous expression for the j term in the surface integral

~ikr
(2 + 1  -ikr _ £ ikr - o (1)* - e X5F
eyl (D% TP, (- m) + Y () T } x
. Jr_ZL_":_]_'. [e ikr + (- )ﬂelkr] P . n) + lkY(z) ( ) elkr ]
U 2r 2 V2 2 ke )
f—&____ [e ikr _ (_)z -ikr] P ( ) + Y(z) ( ) 1kr}
{ 2ikr e 2 ¢ n P) _ X
x AL [t L h T @ -y (DT @) i
- T 2 1 P kr

2+l ooy (2) A4+ 1 2 L2y y(DF o
krz Pz (v1 n) Yz (n) + krz P£ (02 n) Yz (n) +

¢D¥* =y (D =
+ -2 - 2 LA CVI SR CR (15)

By utilizing again the addition theorem and considering that
o«

(@ r,®w=) [y¥P@ 2 @ w, (16)
£=0

we obtain the formula

4 X - , - 23 % o . -,
Lot @y -, Gp1+ A v @ F, (@) dw = 0. (17)

J



For an accurate scattering amplitude,ve obtain herefrcm
__1_- - —: _ * - - - -]:_ j‘ % —-) -, _; - ,
51 [ £ (uz, ul) f (vl, uz) =7 f (Jl, n) f (uz, n) dw. (18)

Thus, we have acquired an identical identi:y rfor scattering ampli-
tude as we did in Section 3. 1In this case the identity was derived at
more general ass'mptions, since the potential is, generally speaking,
not considered tco be spherically symmetrical.

§20. The Symmetry of the Interaction Operator and of the [111
Scattering Amplitude. The Scattering Matrix. The
Variational Principle Related to the
Correlation of Unitarity

It was actually assumed during. the deriviation of the basic
formulas in the preceding section that the operator of interaction V is
substantial and self conjugated.

If these conditions are not fulfilled, then the problem on the

scattering of particles, in which the interaction with the scatterer is
1

%
characterized by operators V, Vv , V , V+, will yield different scattering

1 A
amplitudes which we will define, respectively, f, f( ), f(k), f(+). The
conditions of symmetry derived in the preceding section lead, in this
given case, toward the establishment of correlations between these ampli-
tudes. 1In place of correlation (13), we obtain with the same method

» s ! -— -
£y o) =) 5, - 0. (1)
Thus, the principle of separate equilibriwm is fulfilled, if operator V
is symmetrical, that is if V = V'. The requirement of self conjugation
is not compulsory. Let us assume, for instunce, that operator V is a
complex function of coordinates; then the nunber of particles will not be
preserved during scattering. However, in spive of all this the principle
of separate equilibrium will be fulfilled, since operator V is diagonal
in the x-presentation and, consequently, also symmetrical. If operator V

. ' * (") (%)
is self conjugated, then V =V , f = f , and consequently

£ G,y = £ (-5, -9, (2)
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that is, the principle of separate equilibrium combines the scattering
amplitudes of the particles by two complex conjupated fields.*

In place of correlstion (19.18) we obtain, in an analugous way,

the followirg /112
_];_ (+) — - _ w® — —.a NET
21 [f (vzy U].) f (le '[-‘_ I
1 r o — -,
= 4—*; £ (Y, ™) £ (vy, m) du. (3)

Thus, correlation (19.18) is fulfilled, if cperator V is self conjugated.

‘these [ormulas might be recorded in much simpler form, if we
introduce the operator or the scattering matrix

21

S (v s

1 32) =5 (5’1 - '62) + £ (G’l, 32). (4)

Then correlations (19.13) and (19.18) will be stated as
follows ‘

-

S (v, V) =5 (- vy, - V), (5)

[45]

* — - - — -
f (GBS (5, B do =5 U - 5, (6)

Thus, these correlations actually express the properties of
symmetry and uaitarity of matrix S, which is analogous to matrix S in
Section 17.

Contrary to the simpler example in Section 17, we have, in this
case, a continuous association of initial and final states, which are
characterized by the direction of motion of the falling and scattering
particles, that is, by vectors vy and v2.

1
If the scattering matrixes which correspond to the amplitudes f( ),

* ' x
f( ) and f6+), were defined as S( ), S( ) and SC+) then, instead of

correlations (3) and (4), we would cbtain

(') , f* # f(*) ,

* ]
We will mantion that, generally spea“ing, £ # £
and £ 4 £,

T et mAA Y ' ——r,
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g 5 - (') -5 Y
S (v.,v.) =8 (- v, = V), (7)

-

» * . 4 — - -~ =
( ) (uzs n) dw =0 \‘,1 - Uz)‘ (8)

J S vys n) S

It is obvious that the variational principle vy Hulthen-Kohn
(considered iu Chapters I and II) is closely related tc the principle
of separate equilibrium which was derived here.

It can be easily proved that the principle of separate /113
equilibriun is automatically fulfilled, when the approximate functions
Wl and ?2, which correspond to the initial and final states, are used in
a variational calculation of the scatt: :ing amplitude. Actually, if
operator V is symmetrical, we obtain for f (31, - 52) and f (32, - ;1),

the following approximate expression:

R -y - k ¥ 2, ,2 ¥
£ (v, -v) =f (v, vz) + ‘mu| ¥, (7 + & v ¥, dr,
£ (v,, - V) = (9

¥ o o3 X [y 2 _
=f (v,, 11)+4n‘[‘i’1(V2+k V)‘"dex.

By subtracting these equations we obtain, according to (19.12), O in the
right part; thus, the principle of separate equilibrium is fulfilled for
the approrimate amplitude £ incependently frem the_fact if the principle
for the corresponding amplitudes f (31, - vz), £ (uz, - vl), in the

was fulfilled.

~

approximate functions VY ¥

:1’ 2?
Analogous results might be obtained also in the case of more
complicated problems.

We will ncw formulate the variational principle which is directly
reiated with the correlat_on of unitarity conditions (19.18). For this
purpose we *ill construc* the functional

*
1<=f\y2 (V% + k2 - v ¥, dr. (10)

Ve assvme, thereb;, that operator V is self conjugated. Calculating
normally the variation of this functional, in regard t¢ the accurate



wave functions Yl and YZ’ we obtain

GK = - 2L gf v

- .Z-‘L : b t-, — N .—; -3 .
” vz) + % J £ (J2, n) of (ul, n) dw. (11)

1’

The variational orinciple obtained in such a manne: differs =ssentially
from the Kohn variational principle, which was considered in Chapter: I
and IT. TIf we consider a spherically symmetrical problem and resolve the
wave functions ani scattering amplitudec in formula {11) by the [1i4
spherical functions, ther we will arrive at Hulthen's commen variational
principle for a phase.

A distinction from the variational principle by Hulthen for
partial waves is obtained only in the presence of inelastic scattering.
The formulation of .he given variational principle was explained in the
paper by Moiseiwitsch (Ref. 58) in a simple case for s-scactering of
hydrogen electrons.

If we utilize this variational principle for the numeric calcu-
lations and find such approximate functione, for which the functional
K = 0, then obviously the scattering amplitude in these functions wili
satisfy automatically the correlation of unitarity,

§21. The Scattering of Electrons by Atoms and the
Conditions of Symmetry

We will consider as before, for the sake of substantiality, the
collisions of electrons with hydrogen, although the results are genera-
lized directly to more complicated cases.

In order to obtain a formulation of the principle of separate

equilibrium for the given problem, we will consider the condition of
symmetry

NORNNISOIEE NSNS (1)

where the function Y satisfies equation (7.1) and has an asymptotic form
(8.1) and (8.9), and the functional I is determined by the formula (8.10).

The condition (1) might be put down in the following form

NSS! e vl @) vPrar e, 00 @
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By utilizing Green's formula twice, we okttain

lin | dr 1

" » f-(
R~= L ortR) " R 2 b

o) S () _ () 9 (D)7
4 N s < v ' = V.
o1 url YZ i2 orl 1 dSl 0 (3)

In this formula the asymptotic form of the wave function (8.1) and /115
(8.9) night be substituted. By utilizing the orthogonal and standardized
functioa ﬁn’ we arrive in our final calculation toward the surface integral

(analyzed in the preceding section). By solving the amplitude fij by the

spherical function and utilizing the addition theorem, we obtain an
identity which combines the amplitudes of scattering of the direct and
reverse processes

i -

- 1 s .

K, fi5 Ors op 3i Y02 T

- _L l—o . 1—»
. = X f {v y.). (4
i

The equaticen which combines the differential and fully effective crc s
sections for the inelastic collisions (8.4; to (8.6) follows directly
from this formula (see Landau and Lifshits, Ref. 36, Section 116),

2 - oy .2 _T Uy, - -1 2
ki gij (vl, vz) = kj Uji ( Y vl), k, o,. k.%c... (5)

Analogous identities might be obtained also for exchange amplitudes g
For instance, from the condit¢ion

e @, . v G,
=1 @&, 7, v @, ) (6)

1

it is easy to obtain with the same method the equation

1 — - 1 - -
— 3 - = —— - A
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In crd=2:r to obtain the second basic identiry, the analogous
identities {17.10), (18.6) and (192.18) should be based on the condition

e PTE, Ty, v G, -
=1 (Y @, ), v G, )l
L §l>* SR ng) (£, TP1 =
-1 @, 1, v EL 1 ®

whereby in the asymytotic form (8.9) of the functicn Yl, we should

%*
exchange ¢ wich ¢ .
n n

By conducting these same calculations we arrive at the [116
following formulae

1 1 * S - 1 — — =
PoilEmll 4 0 1 - m— ae . -
21 Ui, f13 Y P2 Tk By e D
J 1
- 1 N ek : - )
=ik L ko L) Fin O o £, Gy, 0) dud
n
Aox o L o 1
v ) /) te
+ ‘J gin (vl’ n) 8jn ( 23 n) d»OJ, (9)
1 T * o N 1 . o=
e | e vy L L ‘ _
21 ij B3 W1 U K, Bji g ¥y |
= - i.— ‘l‘ [_ ; * oy - 3 o 1)
B 4x 2 kn L .J gin (01’ n) fJn (vzs h) do +
u
p * i -, - - -
4 \ N

Thus, the formulac derived in the preceding ssctinn can be exzsily
generalized to a problem of two bodies: the collision be:iween az electron
and a hydrogen atom.

L
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It can be seen directly from the deriviation cf these formulae
that thev are of the most general :haracter.

If we assume rnat 1 = j, 31 = 32 and, 1f we utilize formulae
(8.4) and (8.6) for the differential and ccaplete effective cross-section,
then formula {9) adopts the following form

. - k.,
i - T 0T V] = L 4.
2k, £, (a0 - £y O, D) =70 (11)
S - N,
1m {fii (v, v)| = Ga 0 9y (v, v) 2 16(2 3

which is analogous to formulae (1%.92) and (18.10).

In this section and also .n Section 5 we have calculated the
surface integrals by the sphere of a large radius, resolving the scatter-
ing amplitudes into =z row by spaerical functions and utilizing the addition
theorem.

During the caiculation of analogous integrals in Chupter I, we have
conducted a direct integraticn in the derivation of the variacional
principles, with the method prorosed by Dirac (Ref. 59, p. 205). [117
It is obvious that both methods of calculation are equivalent; the
calculations in Chapter I might have been conducted with the same success
bv using the metnod utilized in this :-hapter and vice versa.

§22. Invariance in the Correlation of Unitarity During the
Phase Conversion of Atomic Functions

Formula (21.9), derived in the preceding section, would not change
its form if we multiplied one of the atomic wave functions ws by the

phase multiplier ela. We will prove that this condition is actually
accomplished.

in the case of large r the asymptotic form of the function

. . 2°
Y(l), Y(J), we know that
1 2
D L ikieT, o ok T,
A\ ~ e i 4 .
*'1 \bi \rl) e +> anin knrz ’ (1)
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ik . v, .r — ik =
L3 . i72 2 e n"2
~ ) P
¥, v, F) e + Zanfjn — (2)
n 2
n
We will consider a most simple case; when the function ?S is
exchanged
e L
‘l‘s ‘-se ’ (3)

whereby i # s, j # s. The remaining function wn will remain unchanged.

During such an exchange the scattering amplitudes f. , f. should change

in such a manner that the functions Y(l) and Y(J) would not be subjected

1 2
to any change. It is obvious that
Fo=e ¥ ¥ =% . (4)
is is js js

All remairing amplitudes fmn will thereby remain unchangeable.
If we substitute ¥, and f. in formula (21.9) in place of f., and f_ ,
is js is js

the phase multipliers would become condensed in the s-term, and the
formula would remain unchangeable. This same effect will also be obtained
in the case of the exchange amplitudes Bon

We will now assume that s = i. Then, by substituting { with $i’

the entire function Y(l) will be multiplied by the phase multiplier 118
1

~

ela; consequently, each one of the amplitudes o will thereby be sub-

stituted as follows

£, =ef. , (5)

with the exception of fii’ which will remain unchanged. In the function
(1)
b4

2 only the amplitude fji will, as before, be exchanged

~ -ic
Ey =0 (6)
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We will write down equation (21.9) disregarding the exchange
amplitudes

—

171 R S R SRR T £ a4
21 Lk, £i5 k, fji] " bx Zk | finfyn 4o 7
n

We will multiply all equalities by ela and we will record separately
the term of the sum with n = i

1 r1 ta, 1 X2

1 fad

rv 1 i * ar -io. *
o L /& J (fine 05 fjn dw + " J fii (fjie 05 dw}. (8)

N i
n#i

By utilizing formulae (5) and (6), we obtain

Ll oy Ly 7 _L§ 1 [y o
2i Lk ij kJ JlJ 4 2_ k J i fjn dw. (9)
n

If we take into consideration amplitudes 8un’ then all reasonings will
undergo an essential change.

Thus, the invariance of equation (21.9) is proved. A generali-
zation of the obtained results, in the case of several functions u being

multiplied simultaneously by the phase multiplier e OLn, is trivial. This
proof can also easily be made in the case of formula (21.10).

§23. The Correlation of Unitarity and the Relation Betveen [il9
the Elastic and lnelastic Partial Effective Cross
Sections of Scattering

During the deriviation of equations (21.9) and (21.10) it was not
required, generally speaking, that the energy operator possess a spherical
symmetry. If we should make such an assumpticn and, in addition, assume
also that i = j, then after the solution of the amplitudes fij and 84

by the Legendre polynomials, we will obtair a correlation which would bind



1.1

the amplitude of the falling and scattered partial waves. This corre-
lation expresses the preservation of the number of particles and might be
obtained also from the ccnversion into 0 of the complete cucrent through
the sphere of a large racius surrounding the atom (see, for example, th=z
paper by G. F. Drukarev, Ref. 54), in the same manner as was done in
Section 17 for a verv simple problem. Actually

fo o]

N €} T ‘

in / €in Eﬂ w ' n, (1>
£=0
0

= \_ (f') 2

€in L din Pz & n) (2)
£=0

1 |
Oin = "k J £, v . n)l =
in
[ ] x
1N s )y oW
TRk ) T e 1= ) s (3)
Z:O f,=0
where Ogﬁ) are the partial effective cross sections of the non-
interchangeable scattering. In an analogous manner the partial cross
section of an interchangeable scattaring can be determined.

If we should substitute solutions (1) and (2) in formula [120
(21.9). assuming therety that i = ’, and if we should utilize the addition
theorem, then we will obtain

o]
BN, G -5 =
@
SL YLt (D2, W2 .
“ux Lk L m+ (legg 17+ lag 1D By vy - B @
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By comparing the coefficients at identical Legendre polynomials, we have

k 2 k 2 k 2
W _ x4 N 0 i ) i (1;) ,(z) :
21 (c ii “ii ) = T Z;Gin T o4n Vi ( * 05l ) (5)
n
£ y)
In this case ciZ), Gge)’ oia) are, respectively, complete, elastic and

inelastic partially effective cross sections, whereby the number of in-
elastic processes includes also the elastic scattering exchange. Let us

(£)

assume that = pe . Then

W) b _2. ) () _ b
“je =T 2 =0 %0 %0 7 2 (6)
k.2 (20 + 1) %2+ 1)

and formula (5) might be recorded as

oig) = | Uié)cgﬁ) sin ¢ - 0(1) n

Ggﬁ) can not be less than 0. From this follows
W < oW, 8
i.e., the corss section °§é) is the largest possible partial cross
(z)

section of elastic scattering. At a given value o4 the possible values
(2)

G,
ia

are limited by the inequality

(z) / ) (/l)

0 < 1a < J 1e 1e ) (9)
(z) (z) ("
10 ;O 10

In Fig. 2 the possible joint values Ggﬁ) and cgﬁ) are defined/121

by the shaded region. An analogous graph is availablz in the book by
Elatt and Weiskopf (Ref. 60, p. 255). Tke curve in this graph represents

(2) sy

(_._
& parabola with its apex at the point o %40 16 %0
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Fig. 2. Possible Joint Values of the Reiation of Elastic
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The result obtained is gcneral and true if a solution by partial
waves is possible; that is, if the overator of energy commutates with
the operator of the amount of motiocn moment.

§24. The Principle of Xevarsibility in Quantum Mechanics

It is a well known fact that the principle of separate cquilibrium
or the principle of reversibility is fuifilled in quantum mechanicuy. It
is confirmed that the probabilicy of transition of a system from state
A into state B and from state ¥ into state A should equal each otier. In
classical mechanics this assercion can be easily obtained from the 1ract
that in a conservative ferce tield a particle might travel along a tra-
jectory in straight as well as reverse directions. It is possible to
prove that when this rule is not carried out (for instance, in the care of
notion of charged particles in a magnetic field) the principle of revers-
ibility is not damaged.

Another basic situation for proving the principle of separate/i22
equilibrium in ciassical mechanics is the Liouville theorem from which 1t
follows that density in a phase space does not change during an exchange
of systems in time.
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The principle of separate equilibrium finds an important appli-
cation in statistical physics and is ciosely related to the second
principle of thermo dynamics.

In quantum mechanics it is pessible to establish (by utilizing
the separate equilibrium principte) the relations between direct and
reverse processes in the theor; of collisions; becween a quasi-stationary
state and scattering (Breit-W.gner resouance formula); between scattering
of particles which fall on ~ potential barrier from the right and the
left sides, etc.

Thzrefore,it is ~ssential to give a general rule for the deriva-
tion of the separate equilibrium principle from a quantum mechanical
standpoint. It is commonly asserted (see, for instance, Ref. 36), that
this principle folluws from the 1nvarlance of the Schroedlnger equation
regarding the exckange of # with ¢* and t with -t.

However, this reasoning is not convincing, since the wave funct.on
i * (x, -t) does not characterize the reverse process at all and, as a
rule, does nnt have any simple physical sense. For instance, in a
problem on -he scattering of particles by a potential field, the wave
function Y'* (r, -t) will have the following asymptotic form in the
presence Jf large r

x . N -ikr - B
YT (F, ~t) ~ 2 + £ @, n =————, (1)

that is, we can see that in the case of large r the tunction W* (, -t)

is represented by the imposition of converging spherical and flat waves.
This function will, of course, satisfy the Schroedinger equation; however,
from this fact does not follow at all for instance the equation

£ (Vs Up) = £ (- vy = 0)) ()

which was aerrived iwn Section 19, and which ex,resses the principle of
separate equilibrivm. The sense of the wave function which was reversed
into the past, differs essentislly from its normal sense. This [123
problem was investigated by V. A. Fok (Ref. 61).

The cquality (2) was derived, for instance,in the paper (Ref. 62)
by a strict but sufficiently complicated method. Formalae (2) ¢nd (21.4)
can be easily obtained within the frameworks of the Born approximation;
however, the transition from the Born approximat:on toward a general case
does not represent a trivial task.
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On the vasis of the results obtained in Sections 1 through 5 of
this chapter, we might asseit that for a wide range of problems in the
¢.1lision theory and also, for instance, in the case of problems on the
passage of particles through a potential barrier, the principle of
separate equilibrium follows from the symmc<ry of the functional

I (Y, ¥) =J’ Y, (H - E) Yds (3)

2’

in regard to the displacement of the functi.uns Yl ard Wz which charac-

terize the intial and final states.

‘ In the separate equilibrium principle, we will examine the rassage
of a system between two states: A and B. Howev.r, in collision theory
thk2 stationary problem concerning the cscattering of a flat wave is solved
and, therefore, no passage or change in time with the system occurs. In

oruer to clarify the way in which the idea of transitions between two
states is related to our stationarity of the wave function, it is fiist
of all necessary to accurately determine the state of the systerm.

In the problem concerning the collision of an electron with an
atom the state of the system is known if we measure the impulse of the
free electron and the state of the atom wnich is determined by a certain
ccllection of guantum numbers. Such a determination of state is the wmost
natural, The wave function which characterizes this state of the system
will have the form

Ky .
e 1[" (rl.l AR rn)’ (4‘)

where Kk is the impulse (the wave vector) of the free electron and v is
th» wave function of the atom.

The energy operator H0 to which these funcitions will beiong is

obtained from the total energy operator H minus that peition which /124
corresponds to the inceraction of the atom with a free electron. (Let

us note that, while considering the exchange this part can be different

for the initial and f.nal states). Thus, we come to the usual organization
of the problem: wunder the influence of excitation the system passes from
on2 state into another. Analogous to the way this was done in Section 17,
the stationary wave function can be represented as a resuvlt of a certain
limitary passage from .. non-stutionary wave function. (The possibility

of this limitary passage was shown for cxample in Ref. 27). Then the
scattering amplitude fAB will actually characterize the probability ct the

trarsition of the system from one state into another.
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We will note a certain difference between the scatterlng amplitudes
for a reverse process in formula (21.4) and formulae (21.9), (21.10).

The initial state A is characterized by the wave functinn
. - —_
ik, v, .r,,

il72 o ) -
vV = - N
Y, =e Sy (T, , (5)

and the final state B by the function
2u Gy ©

The passage between these two states is characterized by the scattering
amplitude

fAB = fij (91, uz). : (D

:AB is compared ir the priunciplie of separate equilibrium with amplitude

fB*A* of the passage betweer states B¥*

YB*=e1kv2 AN (8
and A%

YA* e ikul-rz t* ( ) - Y: (9
The form of the functiom YB*’ YAt(i?ll??i)directly from the 125

asymptotic form of the functiom Y Ty

In formula (21.9) the ampiitude f (3,, 31) of the reverse

ji
process characterizes the passage between the states of B and A with
functions (6) and (5).

Thus, in formula (21.9) fji actually characterizes the reverse

passage and in formula (21.4) fji characterizes the reverse passage

between the complex conjugate states. By discarding the weight factors
we can write down equations (21l. 4), (21.9) for the general problem of
collision theory as follows
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fAB = fB#A*’ ’ : (10)
.l.. ¥ —-Y *
21 Cap "~ faa) =/ Sacfae (1)
c *

YHere the summation is exiended to all states C of the system which are
possible at the given emnergy value.

During calculation of the scattering amplitudes by the Bornm method,
we consider all f small and we neglect the magnitudes of the second order.
Therefore, in the first Born approximation, we neglect the right part of
equation (1), and we obtain

£_ - f. . =0. (12)

However, in the second approximation of the excitation theory this
difference will nct ke 0.

If the scattering matrix S is formed according to the forumula

SAB=5AB-Zif s (13)

then equations (10), (11) will be written in the form

=3 (14)

N *
Sap = Sprax Z SacSmc = Bace

c

i.e., they express the condition of symmetry and uanitarity of the matrix
s‘

§25. The Symmetry of the Functional and Variational 1126
Principle for the Non-Stationary Problem

We will examine the non-stationary quantum mechanics problem. The
Schroedinger equation in this case has the form

H‘i’=i§%. (1)

Pi%.‘ kY Kﬁ!ﬁm‘

Sl

T ZTNEEN
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"We will limit ourselves to a qgsgywhére the zmergy operator H is not

_dependent on time. We will thereby .onsider that operator H might even
be non-sel!f conjugated. This means that we include in the consideratiun
also such processes in which a number of particles is not preserved with

time and consequently “he standard integral [ |Y12 dt is dependent on time.
We will examine the probability .f transition of the system from

some initial state, the moment tl’ iuto a certain final state, the moment

t.,. To do this we shall introduce two self conjugated operators A and B

2
with their functions ui and vj

R Aui = Q,u,, (2)

ij =p 3)

v,
i3

and we shall consider that a task of the value of a, or B. simply deter-
mines the state of the system.* 3

That the function Y in the initial moment t1 =u,
(D _
Yl (tl) u, . (4)

It is vequired to determine the probability of the fact that at the
moment tz, the system will be in the state vj. It is obvious that this

probability will equal the square of the modulus of wagnitude
= * (1)
(tls tz) -Ivj Yl (tz) dT: (5)

S
AiBj
which we will call the matrix of tramsition.

+ We will examine the specific function of the operators H and /127
H

By, = E ¥, (6)

*
In a majority of cases the condition of the system is simply
determined if the values are set up, not for one, but for several operators.
However, in principle, this does not change the operationm.
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H g =E §, @

which satisfies the coandition of orthogonality

r % "
We shall arrange in a row through these functions_ui and vj
—_— —— + M
ul = 2’ = Z )¢ > (9)
n n '
) 5 : |
2;b3n ﬁﬁ L. Jnén' (10)
Then the function Y;l) can be presented in the form
. - -iE (t - t.)
(1) __2) . *n 1
Yl = ainbne . (11)

n

and the matrix of tranmsition S will be equal to

- . t.)
G => b(””)"a:. e L (12)
1

We will formulate the separate equilibrium principle for this
general problem. To do this,we will examine the equation

' ) . -
n¢=1§%, B o= @h’, (13)

where H' is the transposed eunergy operator H, &and we will determine the
*
probabilitv of transition on the scate vj, the moment tl’ into the state
i’ the moment t Then the initisl condition for the function § will

2°
have the form
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8D (2 =v*, S

J

and the magnitude which wvst be determined will be equal;to

C) T D ‘
5% . = u1§1 (tz) dr. (15)
B A,
L
Operator H' has the same specifi~ values as operator H : /128
- * *
i - R
L Enjn, (16)

, . ‘ *
By resolving Y{J) through the functions ﬁﬁ,we obtain

, -iE  (t -~ t.)

Q{j) =Zb§:)*55n*e o 1 ; (17)

n

, — -iE (t, - t.))

s¢") =Zainb§-:)*e B2 1T (18)

n

Thus
SétzeA * (tl’ tz) = SA B (tl’ tz) . (19)
j i i

Hence, the matrix elements of transition from the state u, the moment t1

into the state v, the moment tz (the energy operator H) and the transition
%* * ) .
from state v , the moment t1 into the state u , the moment tz (the energy
opzrator H'} are reciprocally equal.
In order to obtain a correlation analogous to the correlation of

unitarity, we introduce, apart from the operators A and B, a thixd
operator C with a specific function W



= >: Crn ¥n5 ¥k ZC(+) (20) -
n . -

then the matrix of tramsition from state vj, the moment t2 into the

state L the moment t3 will have the form

- E (t ) )
MO L. “2
Sp . (tys ty) = 2 byye (21)
ik _ o
By utilizing the correlation
() * [ a4 - "
2>b jm B J gﬁwm dr = & (22)

and the expression for the matrlces of transition (12) and {21), w2 obtain
the correlation

) Sas, (t1s £ Spo (6 € =8, o (g, t). (23)
[ i7j ik ik
Thus, the matrix element of transition from the initial into a /129

final state can be obtained by means of a summation through the inter-
mediate state. By letting C = A an t3 = tl’ we will obtain the

correlations which are analogous to the correlations of the unitarity
introduced in the preceding sections.

We will now formulate a variational principle for the observed
non~stationary problem. Hereby, for simplicity we will let ﬁ+ = H
although such an assumption is not compulsory.

We will form thz functional

ty

(\”Féj), (D) = e i’é”*(u -4 %} ¥ 4, (26)

21
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.in which the functions ?fl), %éJ) satisfy the conditions

(1) (tl) l: ﬁng) (t2)= vj, »: (25); )

Aand we shall examine the varlation of thlS functional in the Leighborhood
(CH N 6 )]
1 YZ
with the initial _conditions (25). Then, through an analy91s of the - -
functions Y and Y =Y+ 5Y by the sgacific functions of the operator H,
we obtaln : : .

I

of the func:ions Y wh1ch are accurate solutlons to equatlon (1)

o T -iE_ (t - t,) ' .
SV Y “n v -
¥ -4Jain¢ne e - (26)
n - i
. _ . -iE_ (t - t.) ‘
Yg-‘) =ijn¢ne ne . (27)
, - -iE_ (t-t,)
g _ @, (D T : n (E78)
NV =0T e =) (ay +8a ) ve , (28)
a _
. — : -iE_ (t-t,)
w3 (@) (3 _> n 2
172 Y0+ 8y, =) (b, + 6bjn) ¢e . (29)
Here, the coefficients a, bjn are not dependent upon time and 6ain’
Sbjn are the functions of time and satisfy the conditions
Sain (tl) =0, (30)
Sbjn (tz) =0, (31)

By substituting expressions (28) and (29) for functions ?(i) Y(j) /130
in the functional (24), we obtain



, ¥(3 ~£i) ) (i):‘ o AT =
@YU Ty, ) + 81 =81 =

_?t - ‘n-"

. =’>ﬁ- fz‘b’:‘ elE (t-t,) ( . g{)&a” e‘lE (- t? e
- t) Jn - ‘ o
B Y AR TR CER S Lt @32
£ ' , .

'J

By conductmg an integratlon through the parts in the first integral and

L

taklng 1nto cons:.deratlon condition (30), we obtain z

oL o ‘ -iE (t,- )
2o W F 2 ‘1
dBI = - 1 ZJ bjn Sain (t2) e )

2
+ f dt I swg_j)* (n-1 ar) 8\1,(1) | (33)
t '

It is easily convincing that the first member of this expression
coincides accurately up to the factor with a variation of the matrix
element of tramsit -u SA B (tl, tz) .

1]
Actually

N N(i) N =
AiB (t), £)) = j vi¥ " (g dr
h| i
— -iE_(t -t.)
.Zb}“n [ain+ da (tz)] e O 2 1

n

= S (t,, t,) + 8S (t,, t,). (34)
,AiBj 1 2 AiBj 1 2
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By disregarding-tﬁe’memberefof the second order,>we obtain

8L = - i3S, _ - (t,, t,).
AiBj 1? "2

. Thue, the stationdry Qetye'bffthe functional

(t , t ) + = ' ('{F(j) '\If(i))

A.B,
i7]
’ o, ‘ - 5 tz ’ g - AC N '
I 6) B, L[ e [ 99 (- YO ar,  cae
,_, J:_vj\vl_ (ep ar+ 3] ac [ (-1 ) T e, 30
under- additional conditions (25) is equal to the matrix element /131
of transition S " C
. A, B
iy
: - (J) (1) -
Sy g (t]» t) =5t (?’ ‘1’ ). (37)

1]

By utilizing the obtained variatioral principle we can work out
the approximate methods of calculation of transition probabiiities and
likewise derive other results which were obtained in Chapter II for the
stationary problems. Thus, for example, by substituting instead of

function ?fi) the function Uy and instead of function véj) the accurate
function YgJ), we obtain also an expression for the matrix element of

transition, which is analogous to the iutegral identity derived in

Section 10:
ty

(tl, t) = f vuy dr + I'f dt J Yéj)* Hu

t

A B dr. (38)

183 i

The extreme trausition from non-stationary to stationary problems
1z concluded first of all in the fact that the initial and final moments
of time, respectively, approach - ® and + ®. 1In addition, for the
scattering probleu, operators A and B in this case characteirize the
direction of movement, the velocity, and the interstate of the colliding
particles, respectively, before and after collision.
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Within its limit the wave function YV, produces a function which
. satisfies the radiation principle, the asymptotic form of which contzins
plain-and divergent waves; the function V, satisfies within its limit '
the reverse radiation principle. As t and t, approach £ « within the
limit, all matrix elements for the transition§ with an energy change of -
the system, are reduced to zero. . _

7 i . . .
The correlation whlch relates the complete cross section of )
scatterlng with the imaginary part of the scattering amplitude on a- D
zerc angle was obtained in the case:of the quantum mechanics’ p-oblem .4
by Fednberg (Ref 63) and was considered further in a series of works '

(Ref. 64) In-a general form the symmetry properties of the scattering

matrix were investigated in. the work by Lippman and’ Schwxnger (Ref. 27).
" The general properties ‘of the matrix of transition, which were ‘examined
_in ‘this section, are analogous to the initial correlations i the work © .-
(Ref 65) .. The derivation-of the characteristics’ of . syrmetry for - L_32
"statlonary problems examined in. this chapter is present 'in"'the: author 33
work (Refi°66). “In.Ref. 67 the correlatlnn of unitarity is Utilized ~
for- an estimation of the imaginary part’of the elastic scatterlng~ampli-
tude of the electrons by atoms. The results obtained are utilized for °*
the interpretation of experimeﬁts in ele:Lron dlfraction on molecules.

SEN
RS

The formuiation of a variaticnal pxinciple for non-stationary -
problems when the energy operator is likewise dependent on time is
pxesent in the work (Ref. 68).

el
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CHAPTER IV /133

THE VARIATION OF SCALE AND THE VIRIAL THEOREM FOR
PROBLEMS OF SCATTERING

§26. The Virial Theorem in Cia2ssicai Mechanics

We will exsmine the system with n degrees of freedom which is

described by the Lagrange function L(ql, . PPRERERIL WS él’ qz, cee qn)

and is not dependent on time, and we shall proceed from the Hamilton
variational principle. According to this principle, the integral

ty

S =I L (ql’ Tty qn; (.11: Tty (.ln) dt, 1)
1

which is calculated along the true path is stationary relative to any
given variation of generalized coordinates 9 (t) in the case where the

variations Sqi (t) are reduced to 0 when t = t1 and t = t2. If this

conditicn is not observed, then

2 2
' OL
. 1 =+
i=] t"bl

We shall vary the scale; that is, we Jhall let Sqi = Eqi(t) “here
¢ is the small parameter. Then, by disregarding the members which are
proporticnal to €2, we have ’

ty

S+ &S = f L (q1 + eqlz---, qn + eqn; q1 + eql,--‘, qn + eqn) dt =

tl .
2

=I L (Q.l"'.’ qn; qls“': (.ln) dt +
i1
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t
2 n
r T /OL oL .
vel ) Goutsay e &)
. i i
t, i=1
1
On the other hand according to (2) [134
n 3 TZ
..\ 9L
B =€) S0 9 (4)
i=1 .
1
Thus
tz n a t%
[ z oL OL N,V 9L |
t:1 i= i=]1 tl

If the movement of the system is periodic than the period T can
be taken as a time interval. Then the right member of the equation dis-
appears. If, during an unlimited increase in the interval t2 - tl, the

coordinates and impulses remain limited, then by dividing the equation

t2 - t1 and reaching the limit, we shall again obtain the fact that the

right member in the limit is reduced to 0. 1In both cases

n
Y (o v s ) <o (6)
i=1

where the line designates the awverage in time. For the system N of
interacting particles in the potential field

N 2
= v

L=Z mkzk-u(}'l, SREOP )
kel

Equation (6) will be written then as follows
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N
- 2 - - —_—
ZL“’k"k IR U G P » Ty ) =
=1

N

- O o
=2T-) T, -YU-=0. (8)
k=

If U is th2 homogeneous function of the coocrdinates, i.e., if

U (G, 0F,, --- , 0T =4V (F, T,, -, T, (9

where m is the order of homogeneity and according to the Euler theorem
on homogenecus functions, we have

N

Zrk * Vk U (rl’ rz’ ¢ . F) rN) b mU. (10)

k=1

/135

Herefrom and from (8), we obtain
2T =m U. (11)

In the extremely important, specific case m = - 1 (the movement

of charged particles or heavenly bodies)

2T = - U. (12)
By utilizing the equation T + U = E which s fulfilled at any given
moment of :ime (7) can be written in another fcrm:
N
2U+Z F, - Y U= 2. (13)
k=1

Formulae (5), (7), (9), (11), (12), and (13) compose the content
of the virial theorem in classical mechanics. These formulae are valid
only in the case of limited trajectories in the phase space. The virial
theorem was originally proved by Clausius and found broad application in
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theoretical mechanics as well as in statistical physics. Its derivation

from the variational principle was proposed by V. A. Fok and Yu. A.
Krutkov (Ref. 69).

§27. The Virial Theorem in Quantum Mechanics.
The Related States

We shall consider for simplicity the movement of one particle in
a potential well. 1In this case the energy operator has the form

H=-%—V2+U(—r'). 1)

In exactly the same way as in classic mechanics, we will proceed from
the variational principle for a discrete spectrum.

If the equation
Hy = E¢ (2)

has a solution for discrete energy values then the functiona:

E=[ ¢ nydr (3)
under an additional condition /136
[ ar =1 @)

a stationary relative to the arbitvary variation of the function .

We will vary the scale of length in the wave function; i.e., we
shall substitute

v (¥) for § (r + er) (5)

in the functicn. 1In order to satisfy the condition of standardization
it is necessary hereby to multiply ¢ (r + €r) by a certain factor.
Actually

o i S MRS A B 093
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* -, — —
fﬁr (r+ exr) ¢ (r+ fr) dr =

[ @Pe, s, ®)
Yoo+ €) (1 + ¢
Thus
3 -
F=s @+ @ =0+’ G+ D, Q)
By substituting the varied function in the functional (3), we have
- - * -
E+ 3 = (1 + €)3 j v (r+ er) x
xl/- lV?'+ U (?)\'w (r + €r) dt =
. 2 /
=f¢*('5)[-l(1+e)v+u >_]\ly(p)d'r . (8)
J 2 d + €

We shall resolve the right member in degrees of € and we shall

discard the members on the order of €2, e3, etc.

E + Er )[% -€V+U(p) -va(B)_}x
x§ () dr =E - « [ " @ lv§+B A KRNI LIENO

From the variational principle it follows that if | satisfies 137

equatior. (2) then the member whic.a is proportional to € should disappear;
that is

J" O IVHT U] ¢ @ dro=o. (10)

or else

2T =% - VU (D). (11)
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By utilizing (2) it is possible to rewrite equation (10) in the form
r —_, — . —
] ]\Lr (r)!2 f20(c) + T - YU ()] dr = 2E. (12)

It is definitely obvious that this derivation is valid alsc ...
any given number of particles if by T we understand the radius-\ .ctor in
the space of the configuration. Thus, we will obtain the forw .iae which
are definitely analogous to the formulae of classical mechan‘:s except
for the fact that there the average is conducted through a2 zreat interval
of time and here equation (1l1) is fulfilled at any giver -aoment t. In
esactly this way it is possible to write 2T = mU for a Yiomogeneous
function U, and 2T = -U for the Coulomb interation (an atom with
many electrons).

The virial theorem in the form (11) was given evidence almost
immediately after the creaticn of quantum mechanics by somewhat more
complicated means (Ref. 70). Derivation of this theorem from th.:
variational priaciple by means of the variation of scale of length was
at first proposed by V. A. Fok (Ref. 10). Such a deduction is easily
generalized also for a case of the Dirac (Ref. 10) theory and for the
Thomas-Fermi (Ref. 71) statistical atom cheory.

The method of scale variation was utilized earlier in connection
with the‘Ritz method in variational calculations of energy levels of the
simplest atoms for instance by BHylleraas (Ref. 5) for helium and for ions
which resemble helium. The scalar variation permits the introduction of
one new variable parameter into the wave function without an additional
calculation of the matrix elements. Because of this the accuracy of
calculations has been substantially increased especially for a small
number of parameters.

We will note that the virial theorem should also be rigorously
performed for approximate wave functions obtained by variational /138
method if the scale of length enters into a number of variable parameters.
It is fulfilled, in particular, for all approximate atom functions
obtained by the Hartree and Fok methods.

§28. The Virial Theorem for the Scattering of Particles
by a Central Field. Partial Waves

We will examine the mnst simple problem coucerning the scattering
of a flat wave by a spherically symmetrical center of force. After the
solution by partial wavee, we come to the system of equations (4.5).

Z a . ;
[;“—2-+ W LD oy o [ =04 @ =0
r T
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We will define &.ﬁ&ai_£2.+ 2U (r) =V (r). We continue to assume
. r -
that Irz U(r)‘ <M; i.e., it is limited at any giver values of r. Then

we come to the equation which is general for all values of 4

4% 2
[+ &

V@ ]y @ =05y © =0. (2)
dr

The solution of this equation for great values of r has the asymptotic
form

¥ (r) ~A sin [kr+ 7 (k)]. (3)

We will use the variational principle of Hulthen (4.18) and we will
conduct a variation on the scale of length in this case. We form the
functional

2

L ®=[4 [;93+ v @]y @ )
r

and we shall substitute in it (r) for ¥, (r + er). Hereby, the
k k

asymptotic behavior of the function

wk (r + exr) ~ A sin [(k+ €k) r+ 7 (kK)]. (5)

is changed. If such a function is substituted in the functional then
the integral will diverge. In order to ensure its convergence, it /139
is necessary to substitute in the functional k for k + €¢k. We obtain

2

I' =j’ ¥y (xr+ er) [—ié-+ (k + ek)2 -v (r)] Yy (z+ ex) dr =
0
}. [1 \2 d2 2,2 ] B_,
=] b (@ [+ ) o2 v <i o) % ® T
0
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«©

_ r T 1 Y _
=[ @ [a+ o (dp2+k>'1+ev<1+e)ﬂ'k (p) do =
0
] _
- I ¢§ (p) L(l + V) - 1 i € v (; i e:U do. (6)
0

We lay out the subintegral function in a series by degrees of ¢ and dis-
regard the numbers which are proportional to the square and to the higher
degrees of ¢,

(L+ ¢V (o) '1iev\1+e)=

V+ Ve (l-e+ ) V(p-€cp+ ++°) =

V+ eV - V+ eV + epV' = 2eV + ¢pV'. (7

By substituting the integral p for r we have

[+]

'L ‘2 an
1 —ejwk<2v+rdr/dr. (8)
0

On the other hand the integrali I' can be exemined as a functional
Ik+€k in which is substituted the variational function

V=1 (x+er) = Vpere (T) + BV (9
The function Yy . (r) has the asymptotic form
¢k+ek (r) ~A sin [(k+ €k) v+ 1M (k+ €k)]; (10)

and thus

M (k) =1 (k+ ek) + 80, (11)

g™ St

s e
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= - 4

il ek ik - (12)

By utilizing the variational principle (4.18), we obtain (140
, 2241

I' = A%k” - . (13)

By comparing (8) and (13), we have

x
[ 2 4 g = 422 41
| <2V+rdr ar = 452 41 (14)
0
The member &—i&?t—ll'which is contained in function V is abbreviated in
r

the brackets under the integral,and we have,thus (Ref. 39)

@D
dn
%) < gg) ) 229,
2 I mk (r) (20 + f ir wk (r) dr = A"k ik (15)
0
Formula (15) is of interest from several viewpoints. In the

first place it is similar to formula (12), Section 2, and was obtained
analogously. We thus have a generalization of the virial theorem in the
case of a continuous spectrum. In the second place by utilizing formulae
(14) and (15) we, knowing the function by (approximately or exac:ly)

when k is fixed, can by means of it determine not only the phase 7 (k)
but also its derivative; i.e., we can determine also the change in phase
N (k) in the vicinity of the point k. In the third place it is curious
that formula (15) has an identical form for all values of g and ¢ itself
does not enter into it openly. Then, since the functions ¢£ or the

phase nz are not directly related to each other, the solution to equation

(1) in the case of each 4 is an independent problem, and only at the very
end the various nl are combined in process of determining the differential

and overall effective cross section.

it is likewise interesting that the generalizaction of the virial
theorem or problems of a continuous spectrum is conducted easily and
naturally in quantum mechanics, whereas in classical mechanics this is
not so simply achieved. This generalization could not fovmerly be [1l41



145
conducted because in classical me~hanics a functional which is simul-

taneously stationary and reduced to zero aloung a true trajectory, carnot
be constructed.

§29. The Most Simple Example

We shall confirm the validity of the verified formula in the most
simple example of a rectangular potential well. We will let

V() = - VO’ r<a; 9Y()=0,r1r>a, (1)

and we shall examine only the s-scattering (£ =0). If we designate

vV, = kz, then equation (28.2) will take the simple form
0 0

b+ ate i y=0, ¢ (O =0, r<a,
¥ =sin ( k2 + kg r); w"+ kzw =0, r >a,

¢y =Asin (kr + 7). (2)

By equating the function and their derivatives where r = a,we find A
and 1

- r_k 2, .2 57
T = arctg Lgiif:=;i tg (Wk™ + ko E)J ka,
0

=
A2k2 = k2 + ké cos2 Csz + kg a). (3)

By differentiating T through k, we will obtain after simple calculations

g k2 sin (2 kz + k2 a)
aw__ % ~ 0
dk 2k+ko[k2+k§cos2( K+ g &)

2 2 2 2
ako cos® ( + ko a)

= 3 (4\
k2 + kg cos2 (a\/kE + ko a)
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K2 sin (Z,Jk2 + K2 a)

2,.2dn _ 0 J 0 2 ’2 2

A"k —_Ldk -———J.T-—z_——- ako « (MEk™ + kO a) . (5)
23\ k” + ko .

During the calculation of the integral it is necesszry to take
into consideration that

V(D) =kS B (x - a). (6)
This [142
a
2 av o _
I V" () (2V+ r ) dr =
0
[+ <]
=-2k2fsin2( K2+ 1% 1) dr + k2 a sin® (WK2 + K2 &) =.
0 0 0 0
0
K2 —
= __-_EQ___E sin (2~/k2 + kg a) - kg a cos2 (\/&2 + kg a) =
2 kK+k
0
= a2 2 4%
= A%k o, (7

which is necessary to prove.

§30. The Derivation of the Virial Theorem Without the J::lization
of the Variational Principle

We will now examine the way in which the basic §~.m da (28.14) is
obtained, not utilizing obviously the variational prin. iy.e. Fer this
we will examine the integral

>

~

(e DGR an W

or
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We shall reorganize the subintegral expression by utilizing the equation

which the.function { satisfies. We have

v

f---+k -v)w-.-o; <5—27+k2~v>%%+ 2ky =0
d? N W
G2+ v A §"2k*'( "kt @

2
2 - o o _,9, dv 2, .
(3,2 + K2 V><r5¥ kak) 2er2+rdrt+2k¢

= (?V +r %%) V. %

Thus, the integrali (1) coincides with the right member of equation (28.14).

%
We shall introduce the designation /143 %
-

Q—ra kak. (3)

It is easy to determine the asymptotic form of the function #
¢ ~sin [kr 4+ 7 (K],

r %% ~ kr cos [ky + 7 (K)],
kg%~<kr+kg—15cos [kr + 7 (W],
Zg~-k %E cos (kr + M). (4)

In addition, it is obviuus that the function @ is reduced to 0 when
r =0,

>
1]
?
«
N
:

e

-

S T
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By integrating thro—gh the parts twice, we obta.n

© ) 2 R
_ /- d 2 h -
I' = j ¢ - + k° - V//ﬂ dr =
dr
0
. a2 N
= (¥2' - +'0) , + ] g (;—5-+ k® - Y/'ﬁ dr. (5)
0 0 dr

Ti.e integral in the right number is equal to 0; the member outside the
integral is reduced to 0 at a lower limit. By utilizing the asymptotic
form of the functions ¢, &, we obtain

ag - ed_ =
= !sin (kr + 7)) . k2 %E sin (kr + M) +

+ kcos (kr + 1) - k a5 cos (kr + )1
L dk w

—®

=2 41
=K dk ’ (6)

which is neccssary to prove.

It is easy to see that in essence the pace of evidence here is
the same as it was in Section 28 although the variational principle /144
is also not utilized directly. The function @ in a given case is
propcrtional to B¢ for that particular case of variation which was
examined in Section 28.

§31. Certain Identities Related to the Virial Theorem.
The Connection Beiween the Discrete and the
Continuous Spectrum

We will examine the equation

¥+ =V (1) s ¢ (0) =0. (1)
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We will let the potential V (r) be such that the equatior has a limited
solution for any given A = kz > (¢ and only for a certain finite number
of negative values

A=A <0, m=1,2, -, N (2)

We form the function F (r) accoxrding to the formula

'\/]z

FO =) m @+ o, 3
n
0

n=1

Here, #“ is standardized for a unit and the functions of their continuous

spectrum tx are standardized for A; that is, the conditions

[, 5, @dr =50 -; %)
E ©
Y d, @ @y @6y ) =5 (-1 ()
n=1 0

are iulfilled.

In (3) we shall proceed from the integration in A the integration
into k

ot—— 8
L
&N
~
laj
~

AR (6)
0

where ﬁk are the standardized wave functions for k. Their asymptotic

behavior is easily obtained from a comparison with the function sin kr
since the standardization of the functions of a continuous spectrum is

dependent only on their asymptotic behavior [145
[z _.
Q& N,J = sin [kr + | (K)]. 7)

By proceeding to the usual function wk (r) ~sin (kr + 1) ¢k = / % wk’
we have ‘



N -
\* 1
P e) R ]2
n k
n=]1 0

We shall now multiply F (r) by 2V (¥) + r ?}{L and we shall integrate
by r :
[oe]

fn F(r) (2V+ xr V') dr =

0
N -]
=) [ w@+rv)ar+
n=1 n 0
o] ke
2 dk 2 .
+ £ [7JV1< (2V + r V') d-. (9
0% o

By utilizing both forms of the virial theorem (27.12) and (28.15)

o«

J' G @uervyar =, (10)
0
_r ‘1112( (r) (2V+ 1 V') dr = k2 ﬁ:ﬁ , (11)
0
We have
2t @ -1 ©@1=[F @ [2v (r)+r%—‘ dr. (12)
0

However, it is known (Ref. 56) that the change of phase during
the change of k from (0 to » equals exactly Nx where N is the number of
combined states (levels of a discrete spectrum). Thus, the left [146
side of equation (12) is equel to zero, and we have

Jr F(r) (2V+ 1 V') dr = 0. (13)
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Thue function F (r) is directly related to the Green functioi. for operator

42
-_2 - V
dr
N o0
¢ (r, £ =) i b b (e + r NG RNECR I e S
n=1 0

Herefrom, it is seen that
F () =G (r, r).
Finally, we have

G(r, r) (2V+ xr V') dr = 0. (15)

ot~ 8

This formu 1 is directly related tc both forms of the virial theorem.
It is valid only in the case of a continuous or a discontinuous spectrum
of specific values.

It is curicus that for the case of a purely discrete spectrum it
is impossible to obtain such a foimula. In tris case the integral in
formula (3) disappears and N will be equal to =, respectively, in
formula (12), the left side is reduced to ®, and thus the integral in
(15) for a purely discrete spectrum always diverges.

. We will now show the way in which the formula combining the inte-

gral f kT (k) dk with the value of the potecrtial V where r =0 follows

0
from the virial theorem.

An analogous formula was obiaincd a2t first by Gelsand and Levitan
(Ref. 72) for a corresponding problem of & discrete spectrum. For the
problen. of a continuous spectrum this formula was obtained by R. Newton
(Ref. 73) and was given a more rigorous foundation by L. Faddeyev (Ref. 74).

Since the formula is already derived and rigorously founded, [147
we will only mention the reasoning prccess which permits it to be
connected with the virial theorem.
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By integrating both numbers ui equation (11) to k, we obtain

=] [e=] o)
| dkf 020 @+ V) dr =j K2 %{l dk. (16)
o o 0

The integral in the right part exists obviously oaly in the case when,

. . . -2
with the ircrease of k, the phase T (k) decreases more rapidly than k
It is possible i¢o prove (using for example the expression for a phase in
2 Born approximation) that in the case of great values of k, the phase

< -1
usually decreases, as k ~. More accurately

fee]
. LT -3
Nk) =-351 V() dr+0 (k7). (17)
2k J
0
It is obvious herefrom that if the right part of formula (16) is final,
then the following ceadition should be fulfilled
f V (x) dr = 0. (18)
0

It is obvious that here with the equaticu

o3

av
f(2V+r$ dr = 0. (19)
0

is also valiid. Proceeding to an examination of the left part of formula
(16) it is necessary to note first of all, that a change of the integration
order in this formula is inadmissible; a transition to the limit k - @

should b2 made after the transition to the limit r — ®, Otherwvisc the
=]

caiculation of the integral J &i (r) dk yields an infin:.ty, which enters

0
the subintegral expression as a factor, and thus, the integral cannot be
calculated by r.

We shall reorganize the left side of the formula (16) [148
utilizing the resolution of the delta-function through the srecific
2

functions of the operator 'QE'- V and through the functions sin kr
dr
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@ N
_'=g.l" 1 —‘I, 1 r\
8 (r-1") pal % (r) by (r ) dk + Ya (r) L (", (20)
0 n=l
2 P
5 (r - r'") == | sin kr sin kr' dk.
v
0

Herefrom,we obtain formally

€0 x0 N
f W2 @ dk = [ sin® r ak - 2 }; ¥ (o =
0 0 n=0
N
s @-) ], (21)
n=]

*
and the left side of equation (16) is written as follows

*
Strictly speaking, in order to base such a subscitution, it is
necessary to indicate that the equation

© X N
. re 2 IV .2 .y L
tim 5 ) [ [y @ akeF) g @
¢] 0 n=]
K
- [ sin? K dk] dr =0
0

is fulfilled for the arbitrary values of § (r) from a sufficiently broad
class of functions. This equation can be given evidence by investigating
the analytical properties of the function *k (r).
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x> <<} .

f 4 av .

J dk f 51n kr { 2V 4+ r ar/ dr

0
N <«

Ty 2 avy

2 2 ] v (r) <2V +r iz dr. (22)
n=1 0

If the virigl theorem is utilized for a discrete spectrum /149

(10) , then the second item in this expression can be writter. as
N
- x Z A (23)
n=l

The first item can be reorgarized by utilizing equatioa (19) and the
Dirichlet formula from the theory of the Fourier intezral

©

o

rko' sinzkr-./2V+r§I\-dr=
' dr//

0

of.—.

8

K

lim J"\/2V+rdv>drjsu1 kr dk =
=0 0

2N
I(ZV_'_rdV)C sin 2Kr)d
K-ocu

(>2]

=-tim [(ver§HHRR G o2y (g, (26)
K~
0

By utilizing (1€), (22), (23), (24), we obtain

@ N

2 dn P1 \ .
Jk ;ﬁ:dk=-4V(0)»nZXn. (25)
0 n=1
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By integrating the left side ot this equation to the members and by

aoticing that the number outside the integral k ﬂ is reduced to 0 wnen
k =0 and k =, we finally obtain

@ N
%Jrkﬂdk=%-V(0)+Z}». (26)
0 n=

1 from V (r) is not 0, we can obtain

Iir the case where an f
150. First of all, subtract from

int
an analogous formula if we note

V (r) dr, and only after this /150

egral
page
1 P
both sides of the equation (11) 5 J
0

integrate to k.

Then, by having repeated the calculat ons, we come to the formula

® N

27 [ _Lf ! _1 - v

KJ k {0+ 5p vV (v) dr [ dk = -V (0) + /. A (27)
0 0 n=}

In the derivation of these fcrmulae,we assume that ¢ = 0; that is, that

the potential V decreases when r —  faster than r-z. The generalization
of the formulae in the case of 4 # 0 is present in the work (Ref. 73) and
does not present any complications in principle.

832. The Case of a Field Which has the Coulomb
Character at Infinity

This case requires special consideration. We will consider that
in equation (28.2) the pectential V contains the Coulomb member [see (5.2)]

V() =S+ v (@), (1)

‘where v {r) decreases at © no less rapid than r-z. Then in the case of
fixed ¢ and k the solution to the equation will have the asymptotic form
of (5.6)

¢k, c (r) ~ sin [kr - EE In kr + 7 (k, c)] (2)

o B B B 5

N : 5
T Tt v o
- "

g et

A gt T

e T

RS IR SRS CN e M
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If we now vary the scale in the functional Ikc (4) , we obtain

£

LT
’bkc (r + €r) ~ sin L(k + €k) r 7k

Ink (r+ er) + 7 (c, k)] =

c + €c

= gin [(k+ €ek) r -m

In (k+ ¢k) r+ 1 (c, k)]. (3)

Here it is seen that in the functional 1' it is necessary to substitate
not only k for k + ¢k, but also ¢ for ¢ + €c. Only in this case will the

functional remain convergent. We obtain [151
T " d2 2 ¢+ ec
I =fd:kc (r + er) L'—2+'(k+ €k) il -
0 dr

-V (r):l o (r+ ex) dr -—'-f e @ [:(-‘-1;4. K2 -
0 dp

'§>(1+€) '141-e"<1$-<>]"f’kc(p) dp =

@

= ¢ J d’lzc (r) [2v () + xv' (©)] dr+ O (62) . %)
0

We now utilize the variational principle derived in Section 5
U =Ik+ €k, ¢ + €c [d"k+ €k, ¢ + €c (r)+8\1;:|=-kbn; (5)

) ~ sia [(k+ek) r -5t € g (k4 ck) r+

b w ek, c+ ec (T 2 (k + €k)

+ 7 (k+ ek, ¢+ ec)]; (6)

N (k, ¢) =T (k+ ¢k, c + ec) + 81; (7)
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6’ﬂ=-e(/c§n+k%£‘>. (8)

From (4), (5), and (8) we have

j wic (r) [Zv (r) + r %%} dr = ke %§-+ k2 %& . (9)
0

In comparison with (15.3) this formula is less suitable for practical
0
calculations, since it contains the value 5% , which is of considerable
)
lesser interest than 52 .
We will note that for related states the presence of Coulomb
members does not change the formulation of ihe virial theorem since the

asymptotic behavior of the wave function at great distances from the
nucleus does rot substantially change.

§33. The Variation of Scale in a Three Dimensional /152
Case for Problems of Scattering

We consider the equation
2 2 - - ,
[VC+ k" -V (r)] ¥ (xr) =0. (1)

It is necessary, in this case, to understand the variational principle of
Kohn, which was investigated in Section 6, and conduct a variation of
scale in the functional (6.8), (6.17)

_ [ 2 2 - —_ -
I, (¥, ¥)) _f v, @0 9P+ -y @Y G (2)
We will produce a substitution
Y, G, 0 ¥ Gre, 0¥, G, 0¥, T+ er, k). (3)

The asymptotic form of the functiong Yl, YZ changes hereby

ei (k + ek)r

i (k+ ek)v.r
e (k + ek)r ° (4)

Yi (r + €r, k) ~ + fk (vi, n)

PR W Y R
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In order to assure the conversions, we will replace k for k + ¢k
in the functional (2). We obtain

[" - -y
I' = J YZ (r + er, k) x
X V2 4+ (k+ €)? -V (D] ¥, + ef, L) dr. (5)

We will act 1n approx1mate1y the same way as we did in Section 28:
we will substitute ¥ + er for p and utilize equation (1)

v o - 2 2 -
I '.f\yz (p’k)l:1+€(vp+k)

\,

1
- 3V (‘1 g \U Y. (P, k) dT =

(1+ e)
- — 1 o 1 r ] - )
[y, G o ® (1+€)3v(1+€ Y G5 0 drs (6)
dr
dr = ——L— =1+ e?
(1 + ¢)

We will lay out the subintegral expression in a row in degrees/153

=(L-V@E ~(L=-3) (V-2 -9V +0 () =
=2V (X)) + ek -VV (@D + 0 (D). (7

' s .
By examining I' as the varied runctional Ik + ek (?2’ Wl’ we

have

V=¥ Grer, ¥ @, k+ ek) + 8Y;

¥ =y, (F+ ¢r, k) =Y, (3, k+ ek) + dY_.

2 2 2 2 (8)
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Herefrom

And finally from the variational principle (6.16), we obtain (Ref. 39)

. o ; . Of, (¥, - V)
J YZ () [2v @)+ 1« W ()] Y1 (r) d7 = 4n Sk ™

Thus, we have obtained a virial theoiem for the general problem
of scattering by a potential field.

§34. The Relation of One Dimensional and Three
Dinmensional Cases (Ref. 39}

In Section 33 we made no assumptions concerning the symmetry of
the potential V (r). Let us now assume that the field is central and the
potential is dependent only on r. Then

TevE = . )

We will show that the one dimensional formulation of the virial
theorem (28.15) given exactly for the case of the central fieid follows
from rhe three dimensional (33.9). For this purpose, we will analyze the
wave functions and scatte:ing amplitudes by these spherical [154
functions or partial waves. Tien [see (4.3, (4.4)]

NP vz) =-zl; Z (22 4+ 1) [e . 1:[ Pz (vys - vz); (2)
£=0
¥, = Z 20+ 1) it e ¢ El? b, @ P, GB,
£2=0
- (3)
- p iﬂz 1 -
Yz = 2}(21 + 1) i* e el (r) Pz (vzon).

£=0
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Furthermore

Py — a — —_
. -ty - - . \
Pg (J], ,2) () Pl (ul vyt

(4)
Let us differentiate (2) through k. Thereby, in the right side
only the phases ﬂ] are dependent on k
Af, (Gys - Ty = 2m, &,
4y Sk =4t ) {22+ 1) e ~ - ( ) P (u1 v ) (3)
g=C

Let us substitute, in the left side of equation (33.9), ?1 and ¥_ in the
form (3). By utilizing the orthogonality of the spherical functions, we
have

- - L7 4T, )
2’ tl (r) LZV (r) + r %%J %, (r) dr- 1?+¢ e L2 X
b4

© -—s 8

h,9'=0

x (22 + 1) (zz'+1)ipy (GZ-H)P (‘61.?1) dw » =

J

# (r) (év +r d,/ ; (r) dr x

- - - - - 2 1
x | P, (3, B, G0 du (24 2 (e ¢

P - (6)
Furthermore, by utilizing the addition theorem (9.4), we obtain /155
o
- . 4n 2i7
j Yz 2V (x) + 2 -« WV (v) ] deT = ;— zd (22+1) e ! x
2=0
-]
x )4 @, -5 fwz (r) 2V + V') dr (7
£ 1 27 J s N '

G



161

By substituting (5) and (8) in formula (33.9) of the preceding secricr
and oy comparing the members for the case of identical values of P!, we

obtain actually a one dimensional formulation of the virial theorem
(28.15).

Let us note that all formulae which are examined here (and, in
particular, both formulations of the virial theorem) ar: applicable not
only in quantum mechanics but also for any given problem which is des-
cribed by equation (33.1); that is, for a problem concerning the defraction
of a flat wave on spatial inhomogeneity of finite dimensions.

The derivation of these formuiae has a certain similarity to the
derivation of the virial theorem for mclecules. Here, during the variation
of scale, it is necessary to change the wave number; therefore, the
derivative of the phase or scattering amplitude by wave number enters
into the finite formula. In the case of a molecule the variation of scale
changes the distance between nuclei and the derivative of the overall
energy of the molecule enters into a finite formula according to the
distance between the nuclei (in an equilibrium position of the molecule
this derivative is reduced to 0).

§35. Variational Methods and the Scattering of Electrons
on the Thomas-Fermi Atom

The problem concerning the scattering of electrons on the nesutral
atom with an arbitrary charge in the nucleus Z can be approximately solved
if we examine the atom in the Thomas-Fermi method. In this case, it is
recessary to substitute the atom by means of the center of force with a
potential calculated from the Thomas-Fermi equation, which is expressed
through one vniversal function for any given 2

; __Z _/x 1/3N
where 156
- -1 /73m\2/3
b—0.885—2K4J ,
and x (x) satisfies the equation
x" o= x23120 50y =1, x (=) =o. (2)
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The scattering of electrcns on the atom is described in this
approximation by the equation

2 2 27 T 1/3:? -
£y = = .
v+ k©+ x\bz _,‘i’(r) 0 (3)

i
L r
The wave function Y should have the asymptotic form

ikg T — - eikr
+ £, (v + n) sl (4)

¥ (k, Z; 1) ~e

The problem is concluded in finding sz (v - m.

However, in this organization the problem is solved quite roughly
(in particular, we disregard the exchange and polarization of the atom
by a bombarding electron). It is still possible to obtain satisfactory
accord with an experiment even for slow eclectrons except when their
scattering occurs on great angles. The Thomas-Fermi potential yields a
poor estimation of the true distribution of electrons with large values
of r; therefore, the electron scattering on small angles (which occurs
primarily during 'distant" collisions) does not yield conformity with the
experiment.

Equation (3) is easily solved in a Born approximation. In this
case, we obtain (Ref. 36)

- ~1/3™
sz (cos Q) = kZZ/J ] (kb sin 8. Z 1/3

] 2 J > (5)

and thus, in this approximation, f is expressed through one universal
function for all values of k, Z and 6.

However, generally speaking, this formula is already illogical
with small values of k and ejuation (3) muct be solved for ezch value of
k and Z (Ref. 1).

Let us look at the types of general formulae which can be /157

obtained in this case by using the variavional principle. The functional
(6.17) wiil hLave the form

L [WZ (k, Z2; 1); ¥y (k, 23 r)] =

. 2 2422 (r AN
—IYZ[V4k+rx<bz DIRACLE (6)
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A variation of the scale on this functional leads as usuzl to a formu-
lation of the virial theorem for the given cace

P F, 2 /r 4/3 d2z 1/31
Z‘J‘i’zz_zerbz +rd x\\bZ /‘Yd

of
= 47 '5‘1: . (7)
By simplifying the expression in the quadratic brackets,we have

r fx U, L3, 1/31
-2 .l 2 L (b ¥

X ‘b // 1 dr =

.J
of
= 4 Sk - (8)

However, other than the variation of scale, it is possible to
conduct in this functional another variation of charge in the nucleus Z.
Let us substitute in the functional (6) Z for Z + €Z, leaving Y,, ¥

1° 2
unchanged. Then it is possible to write

Ik,Z+eZ (YZ, Yl) = Ik,Z+eZ {Wz (k, Z + €Z; r) + SYZ,
¥, (k, 2+ eZ; D+ 8¢, 1. (9)
hereby
- - of
- = - g ) = - g7 =—
of (Ul, 02) of ( CcoS u) €L az . (10)

By using a variational principle,we have

114 qf
Lezrez (20 ¥ = é{? €2 5+ C (e b, (11)

¢ DT Y i s, ) ..
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On the other hand /158

L zvez (Yoo ¥ =

_ .2 2 2 (Z+ k) T 1/3 ;_21/37.‘ _
—f‘i’ziv + k™ + ” xL(1+e) ‘B J}Yld'r—
. rz _/xr 1/ 1 .4/3 /¢ _1/3™7
= —_ (= Z 1 — - =
zeJYer\b Stz (g7 dr+
2
+ 0 (7). (12)
Thus, we have two very similar formulae
Z 1/3 1 4/3 T ,1/3 \] _
2 L J* yA z ) Yl dr =
of
= - 4"(1( ak 5 (8)
1/3‘ 1 .4/3 , (% ,,1/3\] _
zkf‘i’ /+3bZ X Z /Yld'r—
-4z &£ (13)

Definitely the s2me type of formulae can be obtained also for partial
waves

%}‘52 (x) [ G 1/3> 1 7413 .[r 1/3“\,7{ dr
0

2 s
2 2 Z _/t 1/3\.‘ 1 4/3_, L 1/3 -
SEACEEEICERIES S (AR R
0
on,
—Z—E‘i-. (15)

Here \lyf is the radio functions of the g-th partial wave.
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It is also obvious from the considered example, that if ine energy
operator H, in the case of a certain problem in the collizion theory,
contains a parameter, the variation of which changes scattering amplitude
in the asymptotic form of the wave function only, then we can easily/159
obtain an expression for the derivative from the phase or scattering
amplitude along this parameter, by utilizing the variational principle.
This assertion follows directly from the fact that the scattering ampli-
tude and the phase are stationary values of some functionals.

§36. The Virial Theorem and the Born Method

Let us explain the aspect that formulae (28.14) and (33.9) will
have in the presence of great values of k when the Born approximation is
‘valid. For the problem concerning the scattering of particles by the
center of force, we have the following approximate expression for the
phases (10.37)

@

T"z = - %J V (r) EIHI/Z (kr)}2 r dr. (D
0

The approximate solution to the equation for the radio functions

o
w

" r ﬂ" -
w£+Lk2~%&-V(r)J¢z=o; ¥ (0) =0, (2)

r

if V (r) is considered small in comparison with k2 it is well known
(10.34) that

a2
b, () ~ 8, () = (= Ly1/g (KO- 3)

These solutions have the asymptotic form

g, ~sin (kr - 4. (4)
£ 2
By substituting (3) in (1), we have

RS R RO AN CORS ()

o &~ 8
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In order to obtain an equation analogous to formula (28.14), /160
we will diffeventiate formula (5) through k. We have

dn ®
£ 1 2 ..
Ik = 2 J vV (v) Qﬁ (kr) dr
0
Lvw 21 w0l a 0)
0

It is now possible to utilize the fact that the-approximate solution to
equation (2) ﬂf is dependent only on the derivative kr, and we will

substitute the differentiation through k by the differentiation through
r in the second integral. Actually

B 2 a 2 N o o '.
k5 @, (o) =x 500, (k) = 2kef @) 5

&

Qg2 @

=] [« o
dn
—l—-—LJ"’ 2 -—lj —
Ik k2 vV (x) ﬁpdr kz Vixr 3 ﬁﬂ d
0 0
@ @«
- L 2 L 24 -
= j vV (r) ,ﬁar + 2 J Qz i [r V (r)] dr =
k=% k
0 0
(-]
1 2 d
=22 L) e (8)
k” 6 ~

Thus, in the framework of the Born method, formula (28.14) is fulfilled
if, instead of an exact wave function, we substitute an approximate
function (3) and calcuvlate the phases according to formula (1).
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Analogously it is possible to investigate a general problem of
scattering of particles by a field of forces. In this case, the wave
functions at great distances from the center of force have the asymptotic
form

- = ikr

kv-r - o, e
+ fk (v, n) el (9

Y (?) ~e’

In the Born approximation fk (I;, ;) can be calculated accerding to /161
formula (10.26).

£ G R =- g5 v @ MW

in dr. . (10)

Let us differentiate this equation through k

_k ~ d ik(v - m)-r
= j V@ e dr. (11)

Let us substitute again the differentiation through k in the second
integral by the differentiation through the coordinates. We have

— -3 -t

4 ik@ - n)r

“k — —D) -
. — - - i - .
=i (v -n) * re (v -u r;

dk
Velk(u - n)r _ ik (3 _ ;) eik(v - n)‘r;
4 ik(@ - T _Ll= o ik(¥- n).T
ik © =% T Ve . (12)
Thn=
F 1 o ik - 0T
ak--lm.JV(r)e dr -
1 N ik(v - )T
" i V() r . Ve dr . (13)
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We utilize the vector identity

div (fA) = g div A+ A - Vg (14)
and we let
A= ;V, g ik(v - n) -r
then
Bfg__l_jv(;) JKG -
ok bx T
+ jL_ eik(v - n).r div [t V (x)] dT -
b3t
L, [—' > k@ - m) 1],
i J div {r V (1) e | dr. (15)
Furthermore, we have /162
div [TV ()] =Vdivri+Tr - W=3V+7T W, (16)

Fur thermore, the last integral in formula (15) can be reorganized into a
superficial integral and it is reduced to zero at the limit if V decreases
rapidly enough. Finally, we obtain

b a%%,_n)_ =j ST oy Dy 4 E . w (D] T g, (17)

Thus, we have obtained formula (33.9) i: which flat waves were
substituted instead of the functions Yl and Y4'

§37. The Virial Theorem for the Problem loncerning the Collision
of Electrons with au Atom. The Possibility of Applying the
Theorem in Numerical Calculation

The case of electron scatt:ring on an atom of Lydrogen can be
examined exactly the sare way as the scattering on ‘he center of force.
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In the complete wave function VY (?1, ?2) it is necessary to vary

the ¢cale simultaneously by both arguments. Thus, for instance with
great values of Tys the varied non-symmetrized wave function will have

the asymptotic form:

AR A I A D (T, + ery, T, + €T,)
. . ik?-(’fz + 6?2)
~ *i (r1 + erl) e +

ik (r 4er )
+) £ (v,n)k w; +rr)¢ (F, + ). (1)

As can be seen, the appearance of the atomic wave functions likewise
changes in an asymptotic resolution. As we see, the appearance of the
atomic wave functions in an asymptotic resolution likewise changes. As

a result, it is essential to use the variational principle fermulated in
Section 8, Chapter I where the potential of such a variaticn is taken
into consideration. Furthermore, the argument is conducted in identi-
cally the same manner as it was in Section 8, and we come to the formulae

(j) — - - . - . (i) - - -
ff YZ (rl, r2) (2V + r, V. V+r V2 V) Yl (rl, r2) dTldT

1 2 2
Of,, (Vy, - V,)
4x 1 T
"k, Sk ; 2)

P (j) T T > . - . (l) 4 -
.R] YZ (rz, rl) (2v + r, Vl v+ £, V vy (rl, rz) dTlde /163

dg,. (¥, - v,)
ij S - (3)

JTIE

The potentiazl V has, for a given problem, the form

2.2, 2 (%)
2 12
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and is g homogeneous function on the order of - 1. Let us utilize the
Euler theorem and, in addition, we shall come to the symmetrized func-
tions ¥*., Then

%” [Yz(j) (?1’ ;2) = ng) (ty; )1V [‘Yfi) (?1, ?2) +

(i) - = N
+ Yl (r2, rl)] dTl de

4]‘( i — - - —
If partial waves are considered for this same problem (for instance, the
S-wave) then it is possible in the same manner to obtain the formulae

for the derivative of the phase. These formulae are analogous to
formula (28.15).

The virial theorem,which was proven in this'chapter in the case
of various problems, may be utilized for the purpose of simplification
or confirmation of calculations in the collision theory.

Let us note first of all that the virial theorem will be rigorously
fulfilled for phases and wave functions calculated according to the vzaria-
tional method, if the variation of scale enters into the number of varia-
ble parameters. This assertion is fulfilled first of all for calculation
in the method of a self coordinated field with and without the considera-
tion of exchange (for instance, for the Morse and Allis (Ref. 3)
calculation).

Unfortunately, the wave functions obtained as a result of these
calculations were not published, and therefore a similar confirmation is
impossible.

If the variation of scale did not enter into a number of the
variable parameters [as it did, for example, in the work of Massey and
Moiseiwitsch (Ref. 21)] then the virial theorem would be fulfilled only
approximately. 1In this case the check can serve as a criterion of
ai:curacy in the method. If the value %%, which was obtained in the /164
virial theorem is substantially distinct from that which will be received
in direct differentiation of the calculated phase 7T (k), then it is obvious
that either of the number of variable parameters is too small or the
initial form of the wave function was unsuccessfully selected.
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It is also obvious that, if we know the value of the phase
simulte =2ously with its derivative, the number of points which must be
taken for the construction of the curve T (k) can be significantly
decreased.

Let us note that in the calculation of collisions of an electron
s )
with an atom the magnitude S% or the §£ is expressed chrough a matrix

element of the potential energy V, and tnus for the Jetermination of
these magnitudes no additional calculations are required.

The virial theorem for the scattering of particles by the center
of force (Sections 28, 33, 34) was formulated in the work (Ref. 39). A
generalization to more complicated problems (Section 37), and likewise
certain other results (Sectioms 31, 32, 35, 36), which were given in this
chapter are contzined in the dissertation of the author (Ref. 38).

The methods which were examined nere were likewise applied in the
work of Yu. V. Novozhiiov (Ref. 32) for relativistic problems and
problems of the quantum theory of rield.
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CONCLUS ION {165

The variational principles in collision theory were formulated
comparatively recently and are still only beginning to find application
in theoretical reasonings and numerical calculation:. However, already
it is possible to assert that the variational principles permit the
examinacion of well known facts from a modern point of view. They enable
us to obtain a series of new theoretical results by a simpler method and
to elaborate on new effective methods of calculation.

In the contents cf the book it is seen that almost all divisions
of the collisicn theory are in one way or another related to variational
principles; of course, all sucn divisions have not been examined here.
Thus, for example, the investigation of analytical characteristics of the
scattering operator, the resonance feormula, the behavior of the phase in
the case of little energy, the connection between discrete and the
«ontinuous spectrum -- all these questions ar= either directly or in-
directly related to variational principles (the Schwinger variatiomal
printiple, the virial theorem, etc.). To date, many probiems have beeun
insufiiciently studied and still wait their solution.

That which concerns numerical cal-:ulations is the fact that
evideatly conly variational methods permit an effective and rigorous
consideration, for example, of such phenomena as polarization of the atom
by a bombardirg electren and the collection of results, in principle, of
the rame legree of accuracy achieved in calculation of energy levels of
atoms and molecules. In spite of this, experience in the production of
such calculations has b2en accumulated quite slowly. To date in a majority
of works either a one¢ dimensional equation for the phase cr the equation
of the self coordinated field was solved, i.e., those problems which can
be solved by different numerical methods especially in the presence of
electronic machines. The problen of variational calculations [166
consists, first of all, in the indispemsability of extremely exhausting
calculations cf matrix elemeats. Of course, this work has with diffi-
culty yielded to mechanization 1In addition, problems concerning
selection of t:ial functions and convergeability of various methods have
been poorly investigated in comparison with the discrete spectrum.

However, these difficulties are surmountable and, thanks primarily
to them, investigations in this new region have become of special interest.

Translaced by Joseph L. Zygielbaum
Electro-Optical Systems, Inc.
Pasadensa, California
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